
Introduction
Water trickles through the soil interstice during the
natural hydrological cycle. The management of water
resources, as a planned activity of man, often result in
local or regional changes in this natural hydraulic cycle.

When surface waters, that usually contains impurities,
trickles through a fine-grained aquifer, filtration will
occur. As a consequence, interaction forces and different
effects are formed between the ground water and the
huge surface area of the particles in the aquifer. The
water quality will then change to a smaller or larger ex-
tent depending on the actual parameters studied. This
process to improve the water quality is used in the artifi-
cial ground water recharge, bank infiltration etc.

Consequently it is fair to theoretically consider the
subterranean seepage as a water treatment process. This
could be of importance, since the water quality changes
in both positive and negative direction depending on the
composition of the aquifer.

Hydraulic Principles of filtration
When trying to describe the subterranean seepage by
kinematical means, the trickling in most cases can be

considered as a quasi-permanent state. The liquid is in-
compressible, as well as the solids in the aquifer. The
seepage space is homogeneous and isotropic. The water
will completely fill the tension free porous system, and
thus the aquifer consists of two phases. 

The two available hydrodynamic fundamental equa-
tions to describe the status are the equation of continu-
ity and the Navier-Stokes equation (Huisman and Olst-
hoorn 1983, Kovacs 1972).

The equation of continuity for an incompressible sys-
tem is:

∂vx/∂x + ∂vy/∂y + ∂vz/∂z = div v = 0 (1)

where v is the flow velocity (m/s). The equation de-
scribes the flow gradients in a Cartesian coordinate
system.

Since the only resistance force is the viscous force, the
conservation of energy expressed by Navier-Stokes equa-
tion for laminar flow is:

1/fg · ∂v/∂t = –grad (z + p/g) –v/k (2)

where f is the porosity (%), g the acceleration of gravity
(m/s2), (z + p/g) the piezometric head (m) and k the
coefficient of permeability (m/s).
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At steady motion the equation can be expressed as:

v = –k grad (z + p/g) = –k grad hw (3)

in which hw is the piezometric head (m).
In practice though, the Darcy’s law is usually applied

in most water-supply exercises:

v = k · I (4)

where v is flow velocity (m/s), k the coefficient of per-
meability (m/s) and I the hydraulic gradient.

The dynamical conditions to apply Darcy’s law are
that the accelerating force is the gravity and the re-
sistance force is the viscous force.

The upper limit for the application of Darcy’s law is
characterized by a Reynolds number, which expresses
the ratio between the inertia and the viscous forces. It
should be lower than a certain numerical value, approx.
Re = 2–5:

Re = d · v/n (5)

in which d is the grain effective diameter (m), v flow
velocity (m/s) and n Water viscosity (m2/s).

The lower limit is expressed by the ratio between the
critical hydraulic gradient IC and the limitation gradient
I0 as the following (Kovacs 1972):

IC > 12 I0 (6)

In this case the adhering force as a resistance force is neg-
ligible compared to the viscous force. 

In an application of Darcy’s law at inhomogeneous
and anisotropic conditions, the changes in values of the
k parameter in space and direction must be calculated.

The above equations presume’s that the seepage water
is clean and no impurities enter the porous system. Thus
the interaction forces between the surface of the particles
and the seepage water are unchanged in time and space.
The internal and external conditions of the seepage sys-
tem are constant and the k parameter is constant in time.

These basic hydraulic equations are in principle valid
for filtration. In slow sand filtration Reynolds number is
Re < 2 and the critical hydraulic gradient IC > 12 I0.
However in this case it should be considered that the
trickling water through the porous system also contain
impurities as suspended materials, colloids, flocks, dis-
solved materials, living and dead organisms etc. 

During its passage the impurities, especially the solids,
are brought into contact with the surface of the sand
grains and held in position there by the effect of the
transport mechanisms, which principally involves strain-
ing, sedimentation and adsorption (Woodward and Ta,
1988).

As the impurities are removed from the trickling flow
and deposited in the soil various typical filtration para-

meters, d, f, s, I, v, Re etc, are changed in time and
space due to clogging. The hydraulic gradient I = dh/dl
refer only to a certain cross-section.

Theory of Filtration

In rapid filtration the physical processes usually are
dominating, while the biological processes are negligible.
The mathematical relations between the filtration para-
meters are relatively well characterized. 

Various mathematical models of rapid filtration have
been developed during the past decades. These models
can be divided in two (Ives, 1969). One part is related to
clarification of suspensions. The other part is relating to
the rise in head loss due to filter clogging. 

It is obvious that no accepted mathematical model has
been obtained that correlates all the physical variables
and filtration parameters. The complexity of water qual-
ity, fluid motions and filtration processes make it diffi-
cult to be predictive.

Iwasaki first formulated a clarification mathematical
equation in 1937, where he expressed the removal rate of
the concentration of suspended solids from a flow as
proportional to the local concentration. This widely ac-
cepted empirical formulae (Camp, 1964, Deb, 1969) is:

∂C/∂L = –l · C (7)

where: 

C is the concentration of particles (in number of parti-
cles/cm3)

L is the distance from top of the filter bed from which
C is measured (m).

l is a filter coefficient (cm–1)

By the introduction of a dimensionless specific deposit
coefficient s, Iwasaki developed a second relationship as:

∂C/∂L = 1/v · ∂s/∂t (8)

where v is the flow velocity (m/s)

He suggested the relationship of l with s as:

l = l0 + cs (9)

where:

l0 is the initial filter coefficient (cm–1)
c is a constant (cm–1)

Investigators in this field all agree that l varies with s.
They have developed several kinds of modelling ap-
proaches to cover the whole range of filtration. (Mints
1966, Ives 1969, Matsui and Tambo 1995). Ives (1969),
suggested that:

l = l0 + as – bs2/(f0 – s) (10)
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where:

a is a filtration parameter representing the positive
effect of deposits on the filter efficiency and water
quality early in the filtration process (cm–1).

b is a filtration parameter representing the negative
effect of deposits on the filter efficiency and water
quality late in the filtration process (cm–1).

f0 is the porosity of clean bed (%)

In the equation above the l0 term represent the clean fil-
ter bed. The term as show that, in the beginning of the
filtration run, the filter coefficient l would increase lin-
early with the specific deposit s. The negative term rep-
resent the decrease of the l coefficient towards the end
of filter run.

Many models also emphasize the key role of break-
through curves in rapid filtration design (Adin and
Rebhun, 1977).

Theory of Slow Sand Filters 

By slow sand filtration, in addition to physical and
chemical processes, the biological processes are essential.
A part of the deposited material is converted to other
forms, by assimilation into biomass, and by biological
degradation to dissimilation products, such as minerals
and gases. On top of the filter media photosynthesis
yields a further input of particulate and organic materi-
als. As a consequence certain changes occur on the sur-
face of the media grains influencing e.g. forces and filter
parameters. The above discussed rapid filtration rela-
tionships can thus not be applied in an analogous way in
slow sand filtration.

Jabur, 1976, suggests that for slow sand filtration the
dimensionless coefficient s should be divided into two
parts (Jabur 1976, Öllös 1987):

s = s1 + s2 (11)

where:

s1 is the inconvertible specific deposit
s2 is the convertible specific deposit

By the introduction of S, a slow sand filter parameter,
the equation (10) for slow sand filters is written as fol-
lows:

l=l0+a(s1+s2)–b(s1+s2)2/[f0–(s1–s2)]+Ss2 (12)

where

S is a slow sand filter time and depth dependent
parameter (m–1) 

Ss2 is the changes of s due to the slow sand filtration
processes

In slow sand filters no break-through of the filter media
normally occurs at proper hydraulic operation and with
absence of negative pressure. This is caused by the strong
adsorption capacity and relatively low filtration velocity.
The negative term suggested in equation (12) is thus
negligible. The relationships of l with s for the whole
range of slow sand filters is then the following:

l = l0 + as + Ss2 (13)

–∂C/∂L = (l0 + as + Ss2) · C (14)

The equations 13 and 14 shows, that by adding the Ss2
term the relationship of l with s in slow sand filtration
is very complicated compared to rapid filtration. One
complication is to measure the S parameter.

The mathematical equations have thus up today only
a “philosophical” importance, because of the variety of
mechanisms and the complicity to determine the effect
of the different filtration parameters. The lack of late
references illuminates this.

Slow sand filtration is a simple technology with
respect to the filter construction, but is shown to be
extremely complicated in its function with respect to
physical, chemical, biological and hydraulic behaviour. 

A simplified system model is shown in figure 1. In the
model the relations between different treatment pro-
cesses and the most important parameters are shown
(Jabur, Mårtensson, 1999).

In the last decades new efforts have been made to in-
clude the relation between different micro organisms
and to take into consideration the importance of the
upper thin layer, Schmutzdecke, in modelling of slow
sand filters (Woodward and Ta 1988, Ojha and Graham
1996).

While the mechanisms of slow sand filters are some-
what known, quantitative theories faces problems
caused by the complicity, and the difficulties to measure
the relevant specific variables (Woodward and Ta 1988).

Head Loss

The head-loss diagram of slow sand filters, similar to
rapid filters, consists of two components. The homoge-
neous clean filter media resistance and the extra resis-
tance due to clogging. 

The clean media resistance at a certain depth h0, for
laminar flow of the fluid through uniform granular
media, can be derived from the Kozeny-Carman equa-
tion, if the flow rate, water temperature, media size and
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porosity are known (Camp 1964, Ives 1969, Deb 1969,
Öllös 1987). 

h0 = j · y0
2 · n/g · (1 – f0)

2 / f0
3 · v/d0

2 (15 a)

where:

j is a dimensionless constant
y0 is a dimensionless shape factor of grains in clean

bed
f0 is the porosity of clean bed (%).
d0 is the grain diameter in clean bed (m)

The total pressure losses can then be calculated as:

H0 = 0∫L h0 dL (15 b)

where:
L is the total thickness of the filter media (m)

After the start of the filter run, the head-loss within a
slow sand filter is caused by flow through the upper thin
layer, Schmutzdecke, and the sand bed. As the filter is
operated the schmutzdecke develops and its hydraulic
resistance increase, causing most of the head-losses.
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Figure 1. System model for slow sand
filters.

Figure 2. Pressure conditions in filter 1a
during test 1.



The Schmutzdecke is defined as a thin slimy layer of
both deposited and synthesized material, largely organic
in origin, on the top of the filter bed (Huisman and
Wood 1974, Barret et al 1991, Öllös 1998).

Fig 2 and fig 3 show the head-losses in a pilot slow
sand filter measured by 11 piezometers at different
depths. The tests show that the pressure losses are con-
centrated to the top of the sand, mainly to the
schmutzdecke. The depth of this active layer is about
1–5 cm, depending on filtration velocity, sand charac-
teristics, raw water quality and weather conditions.
Under this level the sand remains almost hydraulically

clean, i.e. impurities exist, but these will affect the pres-
sure losses marginally after a few years of operation. The
clean-bed losses are in general less then 10 cm (Jabur and
Mårtensson 1999, Jabur and Mårtensson 2003).

The occurrence of negative pressure at unsuitable
operation conditions of slow sand filters is also demon-
strated in fig 2. The negative pressure occurs when the
pressure level in the sand is below the atmospheric pres-
sure. The development of negative pressure with in-
creasing depth in the sand went relatively quick, fig 4
(Jabur and Mårtensson 1999).

The negative pressure will affect both the hydraulic
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Figure 3. Pressure conditions in filter 1b
during test 1.

Figure 4. Development of negative pres-
sure in filter 1a in test 1 and 2.



capacity of the filter and the filtered water quality
(Huisman and Wood 1974, Barret et al 1991). It causes
a formation of gas bubbles and air binding in the pores
of the media, which result in rapid increase in filter
resistance, fig 5–6 (Jabur and Mårtensson 2003). The
effect is usually an initial rapid reduction and then large
fluctuations in the filter velocity.

Negative pressure generally ruins the water quality,
which was shown in form of e.g. coliform bacteria, algae
and other micro organisms (Jabur and Mårtensson
1999, Jabur et al 2002).

The negative pressure can be avoided by regulation of
the outlet of the filters. Generally the outlet level should
be above the sand surface to completely eliminate the
risk of forming local vacuum (Jabur and Mårtensson
1999).

Developments

Today equipment is available on the market that re-
latively easy counts the number of particles in water.
Given the parameter C an opportunity opens to de-
termine some of the key parameters in the theory, for a
certain sand and raw water quality.

Sand to be used in slow sand filters is usually follow-
ing strict specifications. A given sand quality has certain
porosity, a certain sand curve and shape and even the in-
cluded minerals are given. For a given raw water, after
pre-treatment, it is thus easier to empirically determine
several filtration parameters as l0, l, f0, f, s, d0, d. Out
of this it is possible to estimate, perhaps guided by the
organic content in the suspended solids, s2. The re-

maining unknown parameters a and S in equations
13–14 can then be determined.

A number of tests can gradually result in relations that
describe the variation of S by time and depth for the
conditions at a certain water works. By comparing the
results from many water works it might be possible to
find limits and typical values for the filter parameters
that can be used in modelling, as design parameters
when predicting operation time, deep cleaning interval
etc.

Conclusions

Reliable mathematical models that can describe the
kinetic behaviour of slow sand filters are at present ab-
sent. A lot of research remains before physical, chemical
and especially biological processes can be described
mathematically, either by developing the existing filtra-
tion models, or by other approaches.

Empirical values of some parameters might be derived
from repeated tests. These results can be used to gradu-
ally refine mathematical models.

The importance of these attempts to mathematically
model the slow sand filters for a quantitative description
of the process is obvious. This could provide an aid for
better understanding of these processes and for rational
design and operation criteria.

List of symbols

A Cross-section (m2)
a Filtration parameter (cm–1). Represent the positive effect

of deposits on the filter efficiency and water quality early in
the filtration process.
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Figure 5. Craters caused by gas release at
negative pressure.



b Filtration parameter (cm–1). Represent the negative effect
of deposits on the filter efficiency and water quality late in
the filtration process.

c Constant in Iwasaki equation, similar to filtration parame-
ter a (cm–1)

C Concentration of particles (in number of particles/cm3)
d Grain diameter (m)
d0 Grain diameter of clean bed (m)
g The acceleration of gravity (m/s2)
hw Thickness of water layer, piezometric head (m)
h0 Pressure losses in clean bed (m/m)
I Hydraulic gradient (the slope of the piezometric level)
IC Critical hydraulic gradient
I0 Limitation gradient, highest gradient at which v = 0
j Kozeny-Carman dimensionless constant
k Coefficient of permeability (m/s)
L Distance from top of filter bed from which e.g. C is mea-

sured (m)
f Porosity (%)
f0 Porosity of clean bed (%)
p Pressure in general
Q Flow (m3/s)
Re Reynolds number
S Filter parameter (cm–1). Represent the specific SSF pro-

cesses in fig. 1.
t Time in general, filtration time
v Flow velocity (m/s) (approach velocity), = Q/A = p · v´
v´ Real velocity (m/s) 
z The height of the fluid above the object (m)
a Surface area per grain divided by the square of the grain

size d (m2/m2).
b Volume per grain divided by the cube of the grain size d

(m3/m3).
n Kinematical water viscosity (m2/s).
s Specific dimensionless deposit parameter, vol. deposit/bed

volume, s = f(t,L)
s1 Inconvertible dimensionless specific deposit parameter

s2 Convertible dimensionless specific deposit parameter
l Filter coefficient or impediment modulus (cm–1), l =

f(t,L)
l0 Initial filter coefficient (cm–1)
y Shape factor of grains = a/b
y0 Shape factor of grains in clean bed = a/b
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