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Abstract
The focus of this work is on general patterns in uncertainty as well as temporal and spatial variability in key 
water variables in coastal science and management. These patterns are essential since they regulate how many 
samples must be taken to get reliable mean or median values characterising coastal water quality and which 
variables are most suitable for monitoring and predictive modelling. We present results concerning coefficients 
of variation, correlations, regressions, variations in data from different time periods, and confidence intervals 
for empirical mean values. We use data from Ringkøbing Fjord (Denmark, N. Europe), Chesapeake Bay 
(Eastern U.S.) and other coastal marine sites to illustrate the basic principles related to patterns in variability. 
We have shown that total and particulate N and P generally have much lower coefficients of variability (CV) 
than dissolved inorganic nutrient fractions. The latter are, hence, of limited use in predictive models for coastal 
management. Total nitrogen (N) and phosphorus (P) were, on the other hand, found to be useful predictors of 
two standard bioindicators, the Secchi depth (a measure of water clarity) and chlorophyll-a concentrations  
(a measure of phytoplankton biomass or production).
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1. I ntroduction and aim
The variability and representativity of variables is a 
major concern in understanding and interpreting 
changes in ecosystems and in developing practically use-
ful predictive models. Even if it would be possible to 
refine empirical analyses to the extent that measurement 
uncertainty would be completely eliminated, the natural 
variability due to physical, chemical and biological pro
cesses would still severely limit our ability to explain and 
predict environmental changes. Thus, data scarcity, vari-
ability and uncertainty are important constraints in 
coastal management (de Jonge, 2000; Irvine, 2004). The 
basic aim of this work is to analyse changes in a set of 
standard water variables using simple, operational statis-
tical methods. 
  Variables may vary both within and among systems 
and the magnitude of these variations influences the pre-
dictive power of both empirical and mechanistically-
based dynamic models. During periods with changing 
wind conditions, most bioindicators (such as Secchi 

depth and chlorophyll-a concentrations) are likely to 
vary much both horizontally and vertically (see, e.g., 
Bloesch, 1995; Weyhenmeyer, 1996; Moldan and Bill-
harz, 1997; Bortone, 2005). This means that there will 
be large uncertainties in single measurements. The same 
argument is valid not just for bioindicators in coastal 
systems but for all water variables in natural aquatic sys-
tems (Comin et al., 2004).
  This work focuses on coefficients of variation (CV = 
SD/MV, SD = standard deviation, MV = mean value), 
variations in data from different time periods, correla-
tions and regressions between coastal water variables, 
and confidence intervals for empirical mean values. Data 
from several coastal areas in Europe and North America 
are compared, although much of the work is based on 
data from Chesapeake Bay, United States (Cooper and 
Brush, 1993; Boesch et al., 2000), and Ringkøbing 
Fjord, Denmark (Nielsen et al., 2004; Petersen et al., 
2008; Håkanson et al., 2007a) because for these areas 
there are extensive data sets available.
  For empirical data to be meaningful in management 
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contexts, they need to convey statistically significant in-
formation that can also be used to in, e.g., model com-
parisons (Peters, 1991). A basic aim of this study is to 
investigate the extent to which water variables fluctuate 
at different sites and at different times of the year, and to 
test which variables are best suited for predicting the 
Secchi depth and chlorophyll concentration. Predicting 
such easily measured and interpretable operational effect 
variables accurately is essential in estimating the proba-
ble outcome of various coastal management strategies 
(Peters, 1991).

2. B rief background on the study 
sites and sampling programs

The two main sites of this study are Ringkøbing Fjord 
and Chesapeake Bay. Mean values and standard devia-
tions, which will be discussed, describe conditions in 
entire ecosystems (= defined coastal areas rather than at 
individual sampling sites), since there is a well docu-
mented interest in analyzing conditions on an ecosystem 
scale (Arhonditsis et al., 2000; Boesch et al., 2000; 
Petersen et al., 2008). 
  Ringkøbing Fjord, Denmark (56°0' N, 8°15' E), is a 
lagoon which in many ways may be regarded as a brack-
ish lake since it is only connected to the sea through a 
narrow sluice. The area of the lagoon is 300 km2, its 
mean depth is 2 m, and its maximum depth is 5 m. It 
has undergone several dramatic ecological regime shifts 
during recent decades (Håkanson et al., 2007a; Petersen 
et al., 2008). The latest regime shift occurred in 1996 
and was demonstrated by marked changes in median an-
nual values for total phosphorus (TP) concentrations, 
suspended particulate matter (SPM), Secchi depth, 
chlorophyll-a concentrations, salinity, macrophyte cover 
and biomass of soft clams. Water chemistry data were 
registered as averages between surface and bottom  
waters during 1980–1986. During 1987–1997, inte-
grated vertical sampling was performed, while samples 
from 1998–2004 were taken from 1 m below the water 
surface. The water column in shallow and exposed Ring-
købing Fjord is subject to frequent mixing by wind and 
wave action and there are only small concentration dif-
ferences between monitoring stations.
  Chesapeake Bay (37–40° N, 75–77° W), the largest 
estuary in the U.S.A., is one of the most intensively 
studied coastal areas of the world since it has been greatly 
affected by nutrient inputs, intensive fishing and other 
human activities (Cooper and Brush, 1993; Boesch et 
al., 2000). It has an area of 11500 km2, a mean depth of 
6.5 m and a maximum depth of 36 m. 200 monitoring 
stations with the most data available were selected from 
an extensive online data set (Chesapeake Bay Program, 

2007). Data were available from several depths, and at 
28 of the stations, a clear summer thermocline (a vertical 
temperature difference of 4°C or more) was detected. 
Therefore, data were divided into two datasets covering 
surface waters (200 stations) and bottom waters (28 sta-
tions).

3. S tatistical methods
The methods described in this section have previously 
been found to be useful in aquatic science and manage-
ment, partly due to their simplicity. The number of data 
(n; sampled from the same statistical population) of a 
certain variable required for acquiring a mean value with 
high certainty can be calculated from the sampling for-
mula, which is derived from the common t-test (Håkan-
son, 1984):

n = (1.96 · CV/L)2 + 1          (1)

where L is the error in the mean value at the 95 % con-
fidence level. Alternatively, eq. 1 may instead be used to 
calculate L, given that n is known from an available 
monitoring program. 
  The predictive power is a fundamental concept in 
aquatic science and management. It expresses the accu-
racy of model predictions and may be seen as a quanti
tative indicator of how well we understand scientific re-
lationships (Peters, 1991). A common and simple way 
to measure the predictive power is to use the coefficient 
of determination (r2; r = the correlation coefficient) 
between modelled and empirical data (Håkanson and 
Peters, 1995; Håkanson, 1999). Yves Prairie (1996) has 
produced some very useful results illustrating the prac
tical utility of models for predictions of individual  
y-values. If the uncertainty bands in a regression are 
wide apart when modelled values are compared to em-
pirical data, then the model can produce useless predic-
tions for individual y-values. The usefulness of the 
predictions and the r2 value display a non-linear rela-
tionship (Prairie, 1996), which conveys that the predic-
tive power of r2 values up to 0.65–0.75 is not very much 
different from the predictive power at r2=0. However, 
predictive power increases very rapidly for r2 values 
higher than 0.75, which underlines the importance of 
searching for high r2 values.
  One way to estimate the highest possible r2 of a pre-
dictive model is to compare two empirical samples of the 
same variable since one can generally not expect models 
to predict better than what one can measure. The r2 
value generated from a regression between such similar 
samples is abbreviated as re

2 (Håkanson, 1999). A sec-
ond method for estimating the highest possible predic-
tive power is to use the reference r2, rr

2. From a statistical 
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point of view, the following equation (see Håkanson, 
1999 for a more detailed motivation) gives rr

2 as a func-
tion of (1) the number of samples (ni) for each yi-value 
in the regression, (2) the number of data points in the 
regression (N), (3) the standard deviations related to all 
individual data points in the regression and (4) the range 
of the y-variable:

rr
2= 1 – 0.66 · CVy

2            (2)

where CVy (or CV for simplicity) is the characteristic 
within-site variability for the y-variable. It is valid for 
actual (non-transformed) y-values.
  Regression analyses could be performed for many rea-
sons, e.g., to compare model predictions (on the x-axis) 
with empirical data (on the y-axis), to test hypotheses 
about relationships, and to develop statistical/empirical 
models. Many textbooks examine regression analyses 
(see, e.g., Draper and Smith, 1966; Cooley and Lohnes 
1971; Mosteller and Tukey, 1977; Pfaffenberger and 
Patterson, 1987; Newman, 1993). One requirement in 
simple regression analyses is that data series are normally 
distributed. If not, normality may be achieved by sub-
jecting the data to log-transformations or to other math-
ematical operations (see Håkanson and Peters, 1995). A 
multivariate regression includes one y-variable and sev-
eral x-variables and the criteria used in this study for the 
x-variables were:

•  They had to be widely used in monitoring programs 
and commonly used as input variables in predictive 
modelling. This excluded chlorophyll (Chl) and the 
Secchi depth (Sec), since they are usually treated as  
y-variables in modelling (Håkanson and Peters, 
1995).

•  They had to correlate significantly with y-variables in 
bivariate regressions as well as within the multiple re-
gression.

•  These correlations had to be of the same sign; i.e., an 
x-variable that was positively correlated with a y-vari-
able was excluded if its contribution in the multiple 
regression was negative, and vice versa.

The last two criteria are necessary in order not to let bi-
variate and multivariate regressions convey contradicto-
ry information.

4. R esults and discussion
4.1. C oefficients of variation and  

predictive power
As stressed in section 2, there are no clear concentration 
gradients in Ringkøbing Fjord due to intensive mixing. 
Table 1 presents randomly selected data from Ring
købing Fjord on total phosphorus (TP) concentrations 
to illustrate a fundamental problem related not just to 
TP-variations, but to changes in most water variables, 
not just for this period from Ringkøbing Fjord, but gen-
erally, for most coastal areas. The table gives mean values 
(MV), medians (M50), standard deviations (SD) and 
coefficients of variations (CV) on a monthly basis. The 
mean value for TP for April is 102 and for May 60 µg/l. 
Given a CV-value of 0.94 (for April in table 1), eq. 1 
conveys that one would need 340 samples to determine 
the true mean value with an error less than 10 % of the 
mean (L = 0.1). However, for TP there are, on average, 
only 6 samples available for each month in this period 
(1982) from this coastal area where a very comprehen-

Table 1. Example of how the available data from the three monitoring stations in Ringkøbing Fjord were analysed regarding TP-concen-
trations (in µg/l) in 1982. MV = mean value, M50 = median, n = number of samples, SD = standard deviation, CV = coefficient of 
variation (SD/MV), L = error in percent of the mean value (with a 95 % probability) and values for the 95 % confidence interval for the 
mean values (plus and minus). Horizontal bars connect rows which contain data from the same month.

Date	 St. 1	 St. 2	 St. 3	 MV	 M50	 SD	 CV	 n (L=0.1)	 L (%)	 plus 95 % CI	 minus 95 % CI

82-02-10	 210	 100	   90	 133	 100	 67	 0.50	   97	   69	 266	     0.2
82-04-01	   30	 230	 220	 102	   45	 96	 0.94	 340	   83	 293	 –90
82-04-20	   50	   40	   40								      
82-05-12	   80	   50	   50	   60	   50	 17	 0.29	   33	   40	   95	   25
82-06-02	   50	   60	   70	   53	   60	 23	 0.42	   69	   37	   98	     8
82-06-29	   10	   70	   60								      
82-07-22	 110	   10	   10	   43	   10	 58	 1.33	 681	 185	 159	 –72
82-08-04	   40	 110	   70	   88	   75	 56	 0.64	 158	   56	 201	 –24
82-08-24	 190	   80	   40								      
82-09-09	   30	 170	 190	 130	 170	 87	 0.67	 173	   93	 304	 –44
82-10-25	 170	   90	 200	 153	 170	 57	 0.37	   54	   51	 267	   40
82-12-09	 120	 170	 160	 150	 160	 26	 0.18	   13	   24	 203	   97
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sive monitoring program is carried out. With 6 available 
monthly data, one has to accept that the error for the 
calculated mean value in April is 83 % and that the 95 % 
confidence interval for the individual data from this 
month varies between –90 and +293 µg/l. The data scar-
city in combination with the variability imply that one 
would need many more samples than available to be able 
to draw any statistically significant conclusions on 
whether there is a change in TP-concentrations between 
months 4 and 5 in this example. 
  Table 2 compiles results regarding salinity, TP, chloro-
phyll-a, suspended particulate matter (SPM), total ni-
trogen (TN), Secchi depth and water temperature, and 
how these variables varied from 1980–2004. CV-values 
are different for different time periods and CVs have 
therefore been calculated for monthly data (there are 
about 5–9 samples available for most months), spring 
(months 3, 4 and 5), winter (months, 12, 1 and 2), sum-
mer (months 6, 7 and 8) and fall (9, 10 and 11). We also 
calculated CVs based on monthly values for all 3-month 
periods, as well as CVs based on values for each year and 
CVs for all the data. This makes it possible to identify 
some interesting patterns in variability; i. e., to distin-
guish whether there are periods when the variability is 
smaller so that more representative, less uncertain, mean 
or median values can be determined. Some of those re-

sults are compiled in fig. 1 for TP, water temperature, 
SPM and salinity. From table 2 and fig. 1, one can 
note:

•  The CVs based on monthly data are very high for 
SPM and TP (0.40), high for chlorophyll (0.37), 
lower for Secchi depth (0.22), and low for TN (0.16), 
temperature (0.15) and salinity (0.10).

•  The CVs based on annual data are even higher: 0.71 
for SPM (a very high value), between 0.5 and 0.7  
for chlorophyll, TP and temperature, lower for TN, 
Secchi depth and lowest for salinity (0.23).

If there are only 6 samples (2 from each of the 3 moni-
toring stations) available for a month and hence about 
12·6 = 72 samples for annual data, one can see that the 
mean or median annual values may be determined with 
less statistical uncertainty than the mean/median 
monthly values, in spite of the fact that the CV-values 
are higher for annual data. For example, for monthly 
data on TP, CV = 0.4, n = 6 gives that the mean value 
can be estimated with an error (L) less than 36 % of the 
mean (with a 95 % certainty). For annual data, CV = 
0.48, n = 6·12 (24 samples from each of the 3 monitor-
ing stations) gives that the error (L) around the mean 
value is 11 % of the mean. So, given the marked variabil-
ity in most of these water variables, and the relatively 

Table 2. Compilation of CV-values (their mean values and standard deviations) for different water variables and dif-
ferent time periods from Ringkøbing Fjord for the period 1980 to 2004.

	 Monthly	 Spring	 Winter	 Summer	 Fall	 3-months	 Year	 All
	 (n ≈ 6)	 (n ≈ 18)	 (n ≈ 18)	 (n ≈ 18)	 (n ≈ 18)	 (n ≈ 18)	 (n ≈ 72)	 (n ≈ 1500)

Sal
  MV	 0.10	 0.19	 0.10	 0.15	 0.16	 0.15	 0.23	 0.35
  SD	 0.07	 0.10	 0.07	 0.07	 0.08	 0.09	 0.08	 –

TP
  MV	 0.40	 0.46	 0.37	 0.34	 0.47	 0.40	 0.48	 0.67
  SD	 0.26	 0.19	 0.18	 0.22	 0.16	 0.20	 0.13	 –

Chl
  MV	 0.37	 0.53	 0.28	 0.36	 0.56	 0.42	 0.52	 0.87
  SD	 0.21	 0.19	 0.15	 0.20	 0.38	 0.26	 0.14	 –

SPM
  MV	 0.40	 0.75	 0.46	 0.54	 0.64	 0.59	 0.71	 0.78
  SD	 0.18	 0.37	 0.23	 0.24	 0.24	 0.30	 0.28	 –

TN
  MV	 0.16	 0.33	 0.14	 0.25	 0.18	 0.23	 0.40	 0.51
  SD	 0.10	 0.10	 0.07	 0.14	 0.11	 0.13	 0.14	 –

Sec
  MV	 0.22	 0.38	 0.21	 0.29	 0.40	 0.31	 0.38	 0.71
  SD	 0.13	 0.15	 0.10	 0.20	 0.15	 0.17	 0.14	 –

Temp
  MV	 0.15	 0.52	 0.12	 0.44	 0.56	 0.39	 0.56	 0.56
  SD	 0.15	 0.14	 0.04	 0.15	 0.27	 0.23	 0.09	 –
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few monthly data available, it becomes important to 
focus on long-term changes on a seasonal and/or an 
annual basis. Fig. 2 gives a compilation of such annually-
based CVs for salinity (smallest CV), Secchi depth, TN, 
TP, chlorophyll, temperature and SPM (largest CV). 
These CVs will also be used in the following to provide 
confidence intervals for the empirical data.
  Is the variability in water variables smaller or greater 
in Ringkøbing Fjord than in other coastal areas? Table 3 
gives a comparison between average CV-values for open 
water areas (in the Baltic Sea) and coastal areas (in the 
Baltic Sea). Generally, the CVs for SPM, chlorophyll, 
TN and TP are about a factor of 2 higher in Ringkøbing 
Fjord than in Baltic coastal areas, and about the same as 
at individual sites in the open Baltic Sea. The main rea-
son for this very high variability in Ringkøbing Fjord 
may seem like a paradox: The lagoon is comparatively 
large and shallow and dominated by resuspension events. 
This means a considerable mixing, but also great tempo-
ral and spatial variability especially before, during and 
after storms, in particular for variables such as SPM, 
which, by definition are related to many cycles of sedi-
mentation and resuspension (Håkanson, 2006).

Fig. 1. Box-and-whisker-plots (showing medians, quartiles, percentiles and outliers) for coefficients of variation (CV) for (A) total phos-
phorus, (B) water temperature, (C) suspended particulate matter (SPM) and (D) salinity from Ringkøbing Fjord based on monthly data 
(there are on average 6 samples available for each month), seasonal data from spring (months 3, 4 and 5), summer (months 6, 7, 8), fall 
(months 9, 10 and 11) and winter (months 12, 1 and 2), based on all 3-month periods, based on annual samples (from 14 years) and 
based on all samples from the period 1980 to 2004.

Fig. 2. Box-and-whisker-plots (showing medians, quartiles, per-
centiles and outliers) for coefficients of variation based on annual 
data for salinity, Secchi depth, total nitrogen concentrations (TN), 
total phosphorus (TP), chlorophyll-a (Chl), water temperature 
and suspended particulate matter concentrations (SPM) based on 
data from Ringkøbing Fjord 1980 to 2004. Data from all three 
monitoring stations have been included.
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  Table 4 extends this comparison to surface and bot-
tom waters of Chesapeake Bay, assuming that changes in 
the whole water body could merit system-wide manage-
ment action. Data included dissolved inorganic nitrogen 
(DIN), dissolved nitrogen (DN), dissolved organic ni-
trogen (DON), dissolved inorganic phosphorus (DOP), 
dissolved phosphorus (DP), orthophosphate (OrtP), 
particulate nitrogen (PN) and particulate phosphorus 
(PP). Organic nutrients had higher CVs in bottom 
waters than in surface waters, while this relationship was 
the opposite for inorganic nutrients. In general, CVs 
were much more similar in Chesapeake Bay to Ring
købing Fjord than to the Baltic Sea sites. To compare 
and complement the data given in tables 3 and 4, one 
can note that Weston et al. (2004) have presented the 
following CVs for chlorophyll-a for marine open water 
areas (from the North Sea), yearly CV = 0.68; rr

2 = 0.69 
(from eq. 2); and median monthly CV = 0.34; rr

2 = 0.93. 

Arhonditsis et al. (2000) reported similar data variability 
from the semi-enclosed Gulf of Gera in the Mediterra-
nean for chlorophyll (taken between June 1996 and 
October 1997), CV = 0.60; rr

2 = 0.76. Apparently, CVs 
may be higher in enclosed or semi-enclosed water bodies 
than in more open waters.
  In addition, tables 3 and 4 revealed a clear pattern 
regarding CVs of several marine water variables, which 
enabled us to group them into four categories. Sal was 
always among the variables with the lowest CVs. DN, 
DON and TN had intermediate CV levels, while PN, 
PP and TP had high CVs. Chl, DIN, DIP, DOP, DP, 
SPM, and fractions of DIN and DIP had very high CVs. 
The large difference in CVs means (1) that variables 
with low CVs may be predicted with much higher preci-

Table 3. Characteristic summer or growing season coefficients of 
within-site or within-system variation (CV), highest reference  
r2-values (rr

2; see eq. 2), and the required number of samples (n) if 
the mean value error (L) should be 10 % or less. Variables from (A) 
sites in the open brackish Baltic Sea (months 6–10; based on 
Håkanson and Eckhell, 2005), (B) brackish coastal areas in the 
Baltic (months 6–8; based on Wallin et al., 1992 and Nordvarg, 
2001), and (C) Ringkøbing Fjord (months 6–8). The context of 
the table is explained in the running text.

	 CV	 rr
2	 n (L=0.1)

A. Baltic open water sites
  Sal	 0.07	 0.997	   3
  Temp	 0.40	 0.89	   62
  SPM	 0.67	 0.70	 173

B. Baltic coastal areas
  TN	 0.13	 0.99	   7
  TP	 0.16	 0.98	   11
  Sec	 0.19	 0.98	   15
  Chl	 0.25	 0.96	   25
  O2	 0.26	 0.96	   27
  DIP	 0.28	 0.95	   31
  DIN	 0.31	 0.94	   38
  SPM	 0.34	 0.92	   45

C. Ringkøbing Fjord
  Sal	 0.15	 0.99	   10
  TN	 0.25	 0.96	   25
  Sec	 0.29	 0.94	   33
  TP	 0.34	 0.92	   45
  Chl	 0.36	 0.91	   51
  Temp	 0.44	 0.87	   75
  SPM	 0.54	 0.81	 113
  NOx	 0.61	 0.75	 144
  DIN	 0.71	 0.67	 195
  Ort-P	 0.76	 0.62	 223
  NHx	 0.78	 0.60	 235

Table 4. Characteristic coefficients of variation (CV) at one typical 
(with conditions compared to representative conditions in the 
whole water body) monitoring station highest reference r2-values 
(rr

2; see eq. 2), and the required number of samples (n) if the mean 
value error (L) should be 10 % or less. Data from Chesapeake Bay, 
months 6–8. Variables from (A) surface waters and (B) deep 
waters. The context of the table is given in the text.

	 CV	 rr
2	 n (L=0.1)

A. Chesapeake Bay, surface waters
  Temp	 0.08	 0.995	     4
  Sal	 0.18	 0.98	   14
  DON	 0.23	 0.97	   21
  TN	 0.24	 0.96	   24
  Sec	 0.26	 0.95	   28
  DN	 0.28	 0.95	   30
  TP	 0.35	 0.92	   49
  PN	 0.37	 0.91	   53
  PP	 0.41	 0.89	   66
  SPM	 0.55	 0.80	 117
  DP	 0.56	 0.79	 122
  Chl	 0.59	 0.77	 134
  DOP	 0.61	 0.76	 142
  OrtP	 0.72	 0.66	 200
  DIN	 0.97	 0.38	 360

B. Deep waters
  Sal	 0.12	 0.99	   7
  Temp	 0.13	 0.99	   8
  DN	 0.23	 0.96	   22
  TN	 0.23	 0.96	   22
  DON	 0.24	 0.96	   23
  TP	 0.41	 0.89	   66
  PN	 0.46	 0.86	   83
  PP	 0.49	 0.84	   92
  DIN	 0.53	 0.81	 111
  DP	 0.56	 0.79	 123
  OrtP	 0.62	 0.75	 147
  Chl	 0.70	 0.67	 192
  SPM	 0.73	 0.64	 208
  DOP	 0.83	 0.54	 267
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sion than those with high CVs given a similar number of 
samples and (2) that 100–1700 % more samples must be 
taken from the “very high CV” group of variables com-
pared to the “intermediate CV” group in order to estab-
lish a mean value for the growing season with an error of 
10 % or less.

  To test and illustrate the first method for determining 
the highest expected predictive power (re

2, see Section 
3), TP-data from Ringkøbing Fjord were used. Fig. 3A 
shows two parallel series of data on TP-concentrations 
where 3 data have been randomly selected in the series 
called Emp1 and 3 other samples used for Emp2; these 

Fig. 3. A. The correspondence between two sets of randomly selected empirical mean values (Emp1 and Emp2) from monthly samples 
taken in Ringkøbing Fjord during the period 1980 to 1997. B. The same data as in fig. A but compared by means of a regression giving 
the regression line, the slope (0.52), the r2-value (0.31), the number of data (n = 181) and the statistical certainty (p < 0.0001). C. The 
same as in fig. B but based on annual data. This gives the slope = 0.94 and the r2-value = 0.87 (the number of data = 25). The context 
of the table is explained in the running text.
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two samples represent monthly mean values in this well-
mixed water body and should represent the same thing. 
Each data point thus consisted of two mean values of 
three randomly chosen data each from the six available 
monthly samples. Then, the re

2 value (see the methods 
section) calculated from 181 monthly samples (from the 
period 1980 to 2004) is 0.31, which is rather low but 
highly significant (p < 0.0001) since the number of data 
is so large (fig. 3B). The slope of the regression line is 
0.52 which is quite different from 1 and underlines the 
poor correspondence between different monthly mean 
values. This variability includes analytical and methodo-
logical uncertainties but mainly depends on the signifi-

cant monthly variability for TP (and most other water 
variables) in this lagoon (and other coastal bays), which 
is also reflected in the very high characteristic CV for TP 
in Ringkøbing Fjord. The higher the CV-value, the 
more difficult it will be to establish representative and 
reliable empirical mean values of the given variable. 
From fig. 3C, one can note that very significant im-
provements in predictive power can be expected for 
annual values, as compared to monthly values (re

2 = 0.87 
versus re

2 = 0.31) and the slope of the regression line is 
much closer to 1 for yearly data (0.94 compared to 
0.52). Evidently, the re

2 value depends on, e.g., the total 
number of samples in the regression and the number of 

Fig. 4. Frequency distributions based on 
all available data from Ringkøbing Fjord 
for the period 1980 to 2004 for: A. chlo-
rophyll-a concentrations (chl), B. Secchi 
depths (Sec), C. total-P concentrations 
(TP), D. temperatures (Temp) and E. 
salinity. The figure gives information on 
frequency distributions based on the ac-
tual data, for logarithmic transforma-
tions of the actual and for exponential 
transformations (of the type √X), statis-
tics (minimum, maximum, mean and 
median values) as well on the ratio be-
tween mean (MV) and median (M50) 
value as a measure of the normality of 
the frequency distribution.
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samples for each individual value. According to table 3, 
one should not expect modelled TP-values for the grow-
ing season to yield higher r2-values than 0.92 when re-
gressed against empirical data, a value which lies slightly 
above the yearly re

2 value (fig. 3). TN, Sec and Chl could 
be predicted with similar or higher precision since their 
rr

2-values were between 0.91 and 0.96, while SPM and 
dissolved inorganic nutrients could be predicted with 
lower precision (rr

2 at 0.60-0.81 according to table 3).

4.2. R egressions and variability
The aim of this section is to utilize data from Ring
købing Fjord and Chesapeake Bay to illustrate inherent 
and general problems related to regressions and empiri-
cal models based on uncertain water variables. Fig. 4 
gives frequency distributions for selected water variables 
(chlorophyll, TP, SPM, Secchi depth and TN) using the 
entire data set from Ringkøbing Fjord for the period 
1980 to 2004. One can note that all frequency distribu-
tions are positively skewed; the ratio between the mean 
value and the median indicates the degree of normality, 
and all these variables have MV/M50-ratios larger than 
1. This also means that a higher degree of normality may 
be obtained after log-transformation (see Håkanson and 
Peters, 1995).

  Fig. 5 illustrates changes in important water variables 
(median annual values) in Ringkøbing Fjord, and in this 
section, we will use regressions to try to statistically ex-
plain variations in the two target bioindicators (chloro-
phyll-a concentration and Secchi depth). The basic ques-
tion here is: how much of the variation in median annual 
values can be statistically explained by the given x-varia-
bles TN/TP-ratio, TP, OrtP, TN, nitrate+nitrite (NOx), 
ammonium+ammonia (NHx), and SPM? Fig. 6 shows 
the regressions between logarithmic values for median 
chlorophyll concentrations (Chl) during the summer 
period versus the corresponding values for TP and TN. 
There is a much closer agreement (r2 = 0.94) between TP 
and Chl than between TN and Chl (r2 = 0.75) in this 
lagoon. Table 5 gives results for many regressions between 
chlorophyll (as y-variable) and potential x-variables and 
table 6 gives similar results for Secchi depth as target  
y-variable. From these results, one may conclude:

•  The results depended very much on the season of the 
year; the best results are generally obtained for data 
from the summer period.

•  Better correlations were obtained for log-median 
values than for log-mean values (data not displayed) 
because most frequency distributions for most varia-
bles are not normal but log-normal (see fig. 4).

Fig 5. Nine curves illustrating changes 
in median annual values (thick lines) in 
selected variables during the period 1981 
to 2004 when there has been a regime 
shift in Ringkøbing Fjord. Five variables 
are given with uncertainty bands (thin 
lines) based on the error in the annual 
mean value at the 95 % confidence level. 
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Table 5. Relationships between different nutrients, nutrient ratios, or suspended particulate matter and chlorophyll-a in Ringkøbing 
Fjord. Six different averaging methods have been used on median log values: annual values of all data, all data adjusted to give equal 
weight to each of the four seasons, spring values, summer values, autumn values and winter values. All correlations are based on log-values. 
Data are from the period 1986–2004, although series that only include TP, NHx, Chl, Secchi and SPM also cover 1985 (except for 
winter values). From Håkanson et al. (2007b).

	 All data	 Season adjusted	 Spring	 Summer	 Autumn	 Winter

r2 (TP vs Chl)	 0.96	 0.94	 0.86	 0.94	 0.93	 0.56
	 p	 p	 p	 p	 p	 p

r2 (OrtP vs Chl)	 0.23	 0.32	 0.03	 0.35	 0.57	 0.30
	 n	 n	 n	 p	 m	 m

r2 (TN vs Chl)	 0.33	 0.24	 0.06	 0.75	 0.58	 0.13
	 p	 p	 n	 p	 p	 n

r2 (NOX vs Chl)	 0.50	 0.06	 0.00	 0.19	 0.27	 0.00
	 m	 n	 n	 m	 m	 n

r2 (NHX vs Chl)	 0.42	 0.59	 0.55	 0.24	 0.52	 0.35
	 m	 m	 m	 m	 m	 m

r2 (DIN vs Chl)	 0.56	 0.09	 0.00	 0.22	 0.33	 0.02
	 m	 n	 n	 n	 m	 n

r2 (TN:TP vs Chl)	 0.81	 0.77	 0.73	 0.68	 0.63	 0.46
	 m	 m	 m	 m 	 m	 m

r2 (DIN:OrtP vs Chl)	 0.45	 0.00	 0.01	 0.51	 0.15	 0.33
	 m	 n	 n	 m 	 n	 n

r2 (SPM vs Chl)	 0.89	 0.81	 0.70	 0.72	 0.78	 0.24
	 p	 n	 p	 p	 p	 p

Significance at the p<0.05 level; p = positive, m = negative, n = not significant, r2 = coefficient of determination, TP = total phos-
phorus, TN = total nitrogen, OrtP = orthophosphate, Chl = chlorophyll, NOX = nitrate + nitrite, NHX = ammonium + ammonia, 
DIN = dissolved inorganic nitrogen = NOX + NHX, SPM = suspended particulate matter.

Fig. 6. Two regressions based on median values from the summer period (months 6, 7 and 8; using data from 1980 to 2004) between 
chlorophyll and total phosphorus concentrations (A) and between chlorophyll and total nitrogen concentrations (logarithmic data for 
Ringkøbing Fjord; if we use data from 1986 to 2004, when the data are more reliable but fewer, the r2-value is 0.76), B. The figure also 
gives the regression lines, r2-values, number of data (n) and the statistical certainties (p) of the regressions.
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•  There were major differences among the x-variables in 
how they correlate to chlorophyll and Secchi depth. 
TP was by far the best predictor for both chlorophyll 
and Secchi depth in Ringkøbing Fjord. Table 7a shows 
results from stepwise multiple regressions on yearly 
median values between five potential x-variables (TP, 
TN, NOx, NHx and salinity) and three different  
y-variables (Secchi depth, Chl and SPM). Out of the 
various x-variables, only TP was included in all three 
cases. When the stepwise multiple regression was re-

peated for median summer values (see table 7b), the 
pattern was similar for Secchi and Chl, but not for 
SPM, where TN and NOx were included as x-varia-
bles. TN also showed strong individual correlation 
with summer SPM (r2 = 0.86 compared to 0.77 be-
tween TP and SPM). SPM was always rejected as an 
additional explanatory x-variable for Secchi and Chl.

•  Nitrogen or ratios based on nitrogen or different 
forms of nitrogen generally co-vary with the two tar-
get bioindicators less well than TP in this lagoon.

Table 6. Relationships between nutrients, Chl-a and the Secchi depth in Ringkøbing Fjord. Median log-values. See table 5 for explana-
tions and abbreviations. Data are from the period 1986–2004, although series that only include TP, NHx, Chl, Sec and SPM also cover 
1985 (except for winter values).

	 All data	 Season adjusted	 Spring	 Summer	 Autumn	 Winter

r2 (TP vs Sec)	 0.94	 0.95	 0.92	 0.93	 0.83	 0.88
	 m	 m	 m	 m	 m	 m

r2 (OrtP vs Sec)	 0.22	 0.31	 0.01	 0.39	 0.49	 0.01
	 n	 p	 n	 m	 p	 n

r2 (TN vs Sec)	 0.42	 0.33	 0.19	 0.76	 0.56	 0.42
	 m	 m	 n	 m	 m	 m

r2 (NHX vs Sec)	 0.41	 0.52	 0.45	 0.19	 0.29	 0.22
	 p	 p	 p	 n	 p	 n

r2 (NOX vs Sec)	 0.48	 0.01	 0.03	 0.52	 0.14	 0.28
	 p	 n	 n	 p	 n	 m

r2 (DIN vs Sec)	 0.52	 0.03	 0.03	 0.56	 0.18	 0.13
	 p	 n	 n	 p	 n	 n

r2 (TN:TP vs Sec)	 0.71	 0.69	 0.61	 0.77	 0.48	 0.61
	 p	 p	 p	 p	 p	 p

r2 (DIN:OrtP vs Sec)	 0.42	 0.03	 0.02	 0.62	 0.06	 0.06
	 p	 n	 n	 p	 n	 n

r2 (Chl vs Sec)	 0.95	 0.83	 0.78	 0.94	 0.78	 0.35
	 m	 m	 m	 m	 m	 m

r2 (SPM vs Sec)	 0.86	 0.87	 0.79	 0.73	 0.84	 0.79
	 m	 m	 m	 m	 m	 m

Significance at the p<0.05 level; p = positive, m = negative, n = not significant

Table 7. Stepwise multiple regression models based on data from Ringkøbing Fjord.

  y-variable	 n (years)	 Step	 F	 r2	 x-variable	 Model

A. Based on yearly median values.
  log (Chl)	 20	 1	 421	 0.96	 x1=log (TP)	 y=-4.239+1.7107·x1
  log (Sec)	 20	 1	 262	 0.94	 x1=log (TP)	 y=3.361–0.8170·x1
  log (SPM)	 20	 1	 155	 0.89	 x1=log (TP)	 y=–1.239+1.007·x1

B. Based on summer median values.
  log (Chl)	 20	 1	 280	 0.94	 x1=log (TP)	 y=–0.833+1.175·x1
  log (Sec)	 20	 1	 254	 0.93	 x1=log (TP)	 y=1.494–0.8129·x1
  log (SPM)	 19	 1	 104	 0.85	 x1=log (TN)	 y=–6.914+3,395·x1
		  2	   67	 0.89	 x2=log (NOx)	 y=–5.589+3.028·x1–0.2028·x2
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Table 8 shows which variables can be used to predict 
Chl, Sec and SPM in Chesapeake Bay with high cer-
tainty. Here, phosphorus as a predictor was not always 
superior to nitrogen as in Ringkøbing Fjord. Those 
nutrients or nutrient fractions which were the best pre-
dictors were generally total or particulate nitrogen or 
phosphorus, followed by dissolved organic nutrients and 
dissolved inorganic nutrients. An exception was the 
OrtP vs. SPM relationship which was relatively strong. 
According to table 9, it seems that various fractions of 
both nitrogen and phosphorus are needed to explain 
areal variations in Chl and Sec, while TP and OrtP were 
enough to explain variations in SPM. A comparison 
with the rr

2 value for Chl in table 4 (0.77) gives at hand 
that Chl cannot be predicted with much higher certain-
ty than in table 9 (r2=0.79). However, rr

2 values for both 
Sec and SPM are much higher than their respective r2 
values in table 9 (0.95 compared to 0.76 and 0.80 com-
pared to 0.65).
  To put these regressions between nutrients and bio
indicators of eutrophication (tables 5–9) into a wider 
comparative context, it is necessary to compare a much 
greater number of aquatic ecosystems. In such a com-
parative study, Guildford and Hecky (2000) found a 
much stronger correlation (r2=0.60 compared to 0.08) 
between TP and Chl than between TN and Chl at 
several ocean sites. Rather similarly, Håkanson et al. 
(2007b) found that TP and Sal in combination corre-

lated slightly more strongly with Chl (r2=0.71) than TN 
and Sal did (r2=0.68) in a wide range of aquatic systems. 
Conversely, Smith (2006) found TN to be a better pre-
dictor of Chl than TP (r2=0.84 compared to 0.60) and 
that TN and TP are strongly mutually correlated 
(r2=0.55). 
  It may be argued that TN and TP are unsuitable for 
predicting Chl, since the phytoplankton which produce 
Chl contain large concentrations of nitrogen and phos-
phorus, increasing the risk of autocorrelation. However, 
TN and TP may alternatively be seen as proxies of Chl 
which have common causes (riverine nutrient inputs). 
Tables 5–9 clearly demonstrate that concentrations of 
dissolved inorganic nutrients are of very limited use in 
predictive coastal science and management. Even though 
batch experiments in laboratories often show that dis-
solved inorganic nutrients is what phytoplankton con-
sume, concentrations of dissolved inorganic nutrients 
poorly reflect their availability since they are very rapidly 
regenerated (Dodds, 2003). Instead, Chl can be pre
dicted with much higher certainty from TN, TP, PN or 
PP, as this study has shown. 
  These results do not specifically address the very in-
teresting and much debated issue on limiting or regulat-
ing nutrient. However, Schindler (1977, 1978) showed 
that bioassays and inorganic nutrient concentrations 
may be irrelevant for the management of aquatic sys-
tems since phosphorus governs the long-run concentra-

Table 8. Bivariate correlations (r2 values) from surface water variables in Chesapeake Bay, months 6–8.

	 DIN	 DN	 DON	 DOP	 DP	 OrtP	 PN	 PP	 TN	 TP	 Chl	 Sec

Chl	 0.01	 0.06	 0.27	 0.26	 0.03	 0.00	 0.69	 0.52	 0.32	 0.22		
	 n	 p	 p	 p	 p	 n	 p 	 p 	 p 	 p 		

Sec	 0.07	 0.31	 0.34	 0.23	 0.12	 0.14	 0.36	 0.51	 0.50	 0.38	 0.38	
	 m	 m	 m	 m	 m	 m	 m	 m	 m	 m	 m	

SPM	 0.02	 0.07	 0.07	 0.04	 0.16	 0.20	 0.12	 0.55	 0.17	 0.45	 0.17	 0.56
	 p	 p	 p	 p	 p	 p	 p	 p	 p	 p	 p	 m

Significance at the p<0.05 level; p = positive, m = negative, n = not significant.

Table 9. Stepwise multiple regression models based on surface water data from Chesapeake Bay, months 6–8.

y-variable	 n (stations)	 Step	 F	 r2	 x-variable	 Model

log (Chl)	 191	 1	 422	 0.69	 x1=log (PN)	 y=1.548+1.022·x1
		  2	 346	 0.79	 x2=log(PP)	 y=1.530+0.7614·x1+0.4445·x2

log (Sec)	 186	 1	 244	 0.57	 x1=log (SPM)	 y=1.596–0.6341·x1
		  2	 275	 0.75	 x2=log (TN)	 y=3.410–0.4692·x1+0.6927·x2
		  3	 194	 0.76	 x3=log (DOP)	 y=3.113–0.4765·x1–0.5169·x2–0.1929·x3

log (SPM)	 117	 1	 155	 0.63	 x1=log (PP)	 y=–0.5251+1.090·x1
		  2	 106	 0.65	 x2=log (OrtP)	 y=–0.5050+1.007·x1+0.1006·x2
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tions Chl in lakes, while any short-term nitrogen deficits 
are counteracted over the year through nitrogen fixa-
tion. This mechanism has also been demonstrated for 
the brackish Baltic Proper (Savchuk and Wulff, 1999) 
and the global ocean (Tyrrell, 1999).

5. C oncluding comments
We have presented CV-values for many standard water 
variables for coastal areas. High CV-values imply that 
uncertainty bands are relatively wide if few samples are 
taken. Fig. 7 presents two types of uncertainty bands 
defined for TP and SPM, first the wide 95 % confidence 
intervals for individual data, then the error bands in the 
mean values (11 % for TP and 17 % for SPM; as calcu-
lated from eq. 1) related to the characteristic annual CV-
values (0.48 for TP and 0.71 for SPM, see table 2) and 
the available number of data for each year (n = 72). 
These uncertainty bands are very useful in modelling 
and fig. 7 illustrates how they can be applied to dynami-
cally modelled values (from Håkanson et al., 2007a) in 
comparison with empirical median annual data. 
  Furthermore, we have suggested and tested methods 
for motivating spatial and temporal scales in coastal 
modelling and management, and discussed methods for 
determining the predictive power and overall usefulness 

of various potential driving variables in regression mod-
els for important coastal bioindicators.
  Finally, we have found that TN, TP, PN and PP show 
much lower variability and are more strongly correlated 
to Chl and Sec than DIN and dissolved inorganic phos-
phorus (DIP) or fractions thereof. The former are there-
fore much more relevant than the latter for predictive 
coastal management. Unfortunately, many coastal mon-
itoring programs do not include TN, TP, PN or PP but 
only DIN and DIP, and many management related 
studies (e. g., Tyrrell, 1999; Arhonditsis et al., 2000; 
Newton et al., 2003) are solely based on DIN and DIP 
pools when it comes to nutrient fluxes. Thus, the results 
from this paper may improve the future design of coastal 
monitoring programs.
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