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Abstract
All forms of hydrological prediction involve many different sources of uncertainty. Many of these sources of 
uncertainty involve knowledge (epistemic) uncertainties that are not necessarily easy to represent statistically. 
This can create problems for communication and interpretation between modeller and users when uncertain 
predictions are presented. One way of dealing with this problem is to define Guidelines for Good Practice in 
the form of a set of decisions that must be agreed and recorded for later evaluation and review. The Catchment 
Change Network (CCN) is a knowledge transfer project, funded by the UK Natural Environment Research 
Council, that aims to bring academic research and practitioners together to produce guidelines for good prac-
tice for uncertainty estimation in predicting the future in the areas of flood risk, water quality and water scar-
city all of which involve important epistemic uncertainties.
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Sources of Uncertainty in 
Hydrological Prediction

The current legislative framework for management of 
water in Europe, including the Water Framework Direc-
tive and Floods Directive requires some hard decisions 
about future investments to achieve the requirements of 
good ecological and chemical status for sustainable use 
and good flood risk management. Such decisions require 
predictions about the nature of future hydrological re-
sponses, predictions that must be inherently uncertain. 
The degree to which the predictions are uncertain, and 
the possibility of constraining the uncertainty by the 
collection of (cost-effective) observations, might change 
the investment decisions taken. So, it follows that as well 
as needing good models to make such predictions, we 
also need robust ways of estimating the associated uncer-
tainties in a way that can inform a risk-based decision 
making framework. This is currently a difficulty because 
we cannot be sure that our models or knowledge of the 

relevant boundary conditions are adequate (particularly 
in water quality, ecohydrology and the flood risk 
models). We cannot be sure that these knowledge or 
epistemic uncertainties can be treated as if they are 
statistical in nature (i.e. a result of random variability). 
Thus, good practice is not necessarily to invoke statisti-
cal uncertainty estimation, which does not deal well 
with complex epistemic uncertainties (see Beven, 2002, 
2006, 2009). This then raises some interesting issues 
about how to communicate the assumptions used to 
describe the different sources of uncertainty in hydro-
logical prediction. 

The nature of errors in  
environmental modelling

It has been traditional to deal with uncertainty in risk-
based decision making in terms of probabilities. Indeed 
some statisticians suggest that probability is the only co-
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herent framework with which to deal with uncertainty 
(e.g. O’Hagan and Oakley, 2004). This implies however 
that the uncertainties can be assumed to be aleatory (i.e. 
at base due to random variability) in nature, or, at least, 
can be treated as if they were probabilistic in nature. But 
this is often difficult to justify given the nature of errors 
in environmental modelling. We can recognise, all too 
easily, sources of epistemic uncertainty in representing 
environmental systems. Epistemic uncertainty arises 
from lack of knowledge and may be difficult to charac-
terise due to changing characteristics in time and space. 
Epistemic uncertainty arises in the meaning of observa-
tions, in the representation of relevant processes in a 
model structure, and in the representation of the bound-
ary conditions and states of that model. Very often, we 
also understand that the nature of such errors will be 
non-stationary in time and space; variability that will 
ultimately control the complex structure of any residual 
series between model prediction and observation. This 
recognition is not new. In the past such errors have been 
called the real uncertainties as opposed to those that 
could be assessed in terms of probabilities. 
  Consider the sources of uncertainty that influence the 
assessment of flood risk. In flood risk mapping, a dis-
tributed hydraulic model (generally formulated in either 
1 or 2 dimensions) is provided with upstream, down-
stream and lateral boundary conditions. To make pre-
dictions it will require a representation of the geometry 
of the flood plain, and a representation of the convey-
ance of the channel and floodplain (including the repre-
sentation of geometry and any effects of vegetation, 
structures, hydraulic jumps, internal shear on effective 
momentum losses etc). Uncertainty in such flood inun-
dation predictions has been considered in the past using 
a variety of different models and methods (e.g. Romano-
wicz et al., 1996; Romanowicz and Beven, 1998, 2003; 
Aronica et al. 1998; Bates et al., 2004; Pappenberger et 
al; 2005, 2007a,b; Werner et al.,2005; Mason et al., 
2009). All of these papers have included only some of 
the relevant uncertainties, though in many cases this was 
justified by conditioning on observed inundation data 
to give a likelihood to each of an ensemble of simula-
tions such that any sources of uncertainty not treated 
explicitly can be assumed to have an implicit effect. It 
does not then follow that predictions under different 
(possibly more extreme) conditions will be equally well 
represented (see, for example, the three events consid-
ered in Romanowicz and Beven, 2003). For a full risk 
analysis, estimates of the potential damages for different 
levels of inundation will be required. This will be a fur-
ther source of uncertainty.
  In fact, it is difficult to see any of the sources of uncer-
tainty listed above as free from epistemic uncertainty. 
Consider the representation of the boundary conditions. 

One dimensional hydraulic models require two bound-
ary conditions (for sub-critical flow) at both upstream 
and downstream boundaries because there are two un-
knowns, depth and velocity. This is normally achieved 
by setting a water level and then inferring a mean veloc-
ity or discharge from a rating curve or uniform flow 
equation (assuming a water surface parallel to the bed 
slope). Two-dimensional models are more complex in 
requiring water levels and velocities in every element at 
the upstream and downstream boundaries, though usu-
ally similar simplifying assumptions are made. However, 
it is rare that rating curve observations extend to flood 
stages, even at gauging stations. Thus there is a certain 
lack of knowledge about what the true mean velocity (or 
equivalent roughness) would be when a hydraulic model 
is used to predict extreme flood events. The boundary 
conditions will be subject to epistemic error.
  Similarly, lateral inflows (or transmission losses) are 
often neglected as negligible or estimated from rather 
poor information, unless there is a major tributary 
(which will be subject to similar or greater uncertainty 
to upstream and downstream boundary discharges). 
Over short reaches this may be acceptable; over long 
reaches it will be a source of error and uncertainty, but 
because we have little knowledge of how to estimate the 
magnitude of lateral inflows, this will be epistemic in 
nature.
  Channel geometry can be another source of epistemic 
error. Surveys of the in-bank channel are expensive and 
are only made at a restricted number of cross-sections. 
Representation of flood plain geometry and infrastruc-
ture has improved with the more widespread availability 
of high resolution LIDAR and SAR digital elevation 
data, but there may still be features such as field bound-
aries, walls and flow pathways under bridges that affect 
the effective roughness, water storage and flow velocities 
on flood plains but which do not appear in the digital 
elevation model. Estimates of the nature of the vegeta-
tion on flood plains from LIDAR surveys have also been 
used to estimate roughness coefficient (e.g. Mason et al., 
2003) but LIDAR surveys are rarely repeated and vege-
tation is not a stationary characteristic. There will be 
epistemic uncertainties in inferring values of an effective 
roughness coefficient at different times and flood mag-
nitudes from the limited data available. 
  An example of a flood risk map produced for the 
town of Carlisle in Cumbria, UK is shown in Figure 1 
(see Leedal et al., 2010). To make a proper interpreta-
tion and assessment of the probabilistic representation 
of the uncertainties in this case it would be necessary to 
know something about how the various sources of un-
certainty discussed above have been treated. Experience 
suggests that treating uncertainties as if they were simple 
aleatory probabilistic errors tends to lead to overconfi-
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dence in estimating the prediction uncertainties. This is 
because the probabilistic model derived in any calibra-
tion or conditioning exercise might not hold if the effect 
of epistemic errors is different in prediction. Certainly 
we need to make some assumptions about the nature of 
such errors even in making plausible scenario simula-
tions (or continue to treat them implicitly when calibra-
tion data are available). The question is how to agree 
what assumptions to use. 

Developing Guidelines for Good 
Practice in incorporating risk and 

uncertainty in environmental models
This recognition of complexity in uncertainty estima-
tion underlies the concept of using Guidelines for Good 
Practice as a way of sharing experience in this type of 
environmental modelling problem. Such Guidelines can 
serve as a repository for experience in dealing with dif-
ferent types of uncertainty in different types of applica-
tion. There are many existing guidelines or standards 
used for assessing flood risk and resulting planning deci-

sions in different countries. The Floods Directive itself is 
a framework for setting standards in assessing flood risk. 
Few such standards to date have, however, taken any 
account of the different sources of uncertainty in assess-
ing the predictions of hydrological models for different 
purposes. But taking uncertainty into account might be 
important if it changes the types of planning or invest-
ment decisions that are taken. In some types of applica-
tion it might then be appropriate to be more precaution-
ary; in others more risk accepting. 

Guidelines as a  
translationary discourse  

between modeller and stakeholders
One barrier to the uptake of uncertainty estimation for 
these types of environmental problems involving epis-
temic uncertainty, is the communication of information 
between modeller and client, decision maker, policy 
maker or other stakeholder. Our experience from work-
shops run to discuss the incorporation of risk and uncer-
tainty into decision making is that decision makers are 

Figure 1. A colour coded map of the predicted probability of inundation of the maximum extent of inundation for the January 2005 flood 
event at Carlisle, Cumbria, UK. The red dots represent post-event surveys of maximum inundation extent.
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not reluctant to deal with uncertainty (though they 
would like to see it managed and reduced as far as pos-
sible) but they want to be quite clear about what is being 
presented. Faulkner et al. (2007) discuss this issue in ap-
plications to flood risk management and suggest that a 
translationary discourse between modeller and stakehold-
er is necessary. This requires that not only the results of 
an analysis be communicated but also the assumptions 
on which the analysis is based. Thus, a framework is re-
quired that allows this communication to start at an 
early stage. 
  One way of trying to achieve this is being tried in 
terms of defining the Guidelines for Good Practice as a 
set of decisions to be agreed between the modeller and 
user. The decisions will cover uncertainties in data and 
modelling, together with choices for the presentation 
and visualisation of the results. Response to those deci-
sions can be agreed and recorded as part of the audit trail 
for a particular application. Such a decision structure al-
lows such evolution over time (including, for example, 
making the Guidelines available as a wiki document to 
which anyone can contribute, see also Pappenberger et 
al., 2006), while making the assumptions of any analysis 
to be defined explicitly and therefore open to later evalu-
ation and review. 

The Catchment Change network 
(CCN)

Developing Guideline-based decision-support systems is 
one of the aims of the Catchment Change Network, a 
project of the UK Natural Environment Research Coun-
cil (see www.catchmentchange.net). The Network – 
made up of three discrete but interlinked Focus Areas 
covering flood risk, water quality and water scarcity – 
will exchange knowledge across a wide range of project 
partners about how best to handle uncertainties in inte-
grated catchment management. It recognises a need to 
reduce the disparity between the largely academic knowl-
edge base and its implementation across a range of user 
groups and the need for a supportive professional frame-
work to ensure consistency and the sharing of knowl-
edge and best practice. It proposes to do this by means 
of Guides of Good Practice, structured as a set of deci-
sions to be made in any application by agreement be-
tween modellers and users. This framework is intended 
to support greater transparency within the decision 
process and enhance credibility and trust across catch-
ment management activities. Future evaluation of the 
decisions that were made and recorded should lead to 
improvements in future practice.
  The intention is that these Guides will ultimately be-

come embedded across a wide range of catchment man-
agement professionals with the aim of encapsulating a 
convenient decision-support framework for practition-
ers and decision makers by focussing on key variables 
whilst clarifying the strength of available evidence. These 
will be living documents that, with broad user input will 
be refined as experience of “good practice” increases.

Conclusions
Hydrological prediction involves many different sources 
of uncertainty. Many of these sources of uncertainty in-
volve epistemic uncertainties that are not necessarily 
easy to represent statistically. This can create problems 
for communication between analyst and users when pre-
diction uncertainties are being presented and inter
preted. It has been suggested in this paper that one way 
of facilitating this communication is to use a framework 
of Guidelines for Good Practice within which sets of de-
cisions form the basis for interaction (the translationary 
discourse) between analyst and users. An essential feature 
of the approach is that the decisions must be recorded so 
that they are available for later evaluation and revision. 
In the UK the Catchment Change Network is intending 
to develop this approach in the flood risk and other 
water management areas. 

Acknowledgements
This work has been funded partly by the NERC Catch-
ment Change Network and partly by the UK Flood Risk 
Management Research Consortium funded by EPSRC, 
the Environment Agency of England and Wales and 
other Agencies. Jeff Neal and Paul Bates of Bristol Uni-
versity are thanked for making the model runs on which 
Figure 1 is based. The background map of Figure 1 is 
reproduced from the OS Explorer 1:25000 series by the 
permission of Ordnance Survey on behalf of the Con-
troller of Her Majesty’s Stationery Office © Crown 
Copyright. Lancaster University, Bailrigg, Lancaster. 
O.S. Licence No. A281220.

References
Aronica, G, Hankin, B.G., Beven, K.J., 1998, Uncertainty and 

equifinality in calibrating distributed roughness coeffi-
cients in a flood propagation model with limited data, 
Advances in Water Resources, 22(4), 349–365.

Bates, P. D., Horritt, M. S., Aronica, G. and Beven, K J, 2004, 
Bayesian updating of flood inundation likelihoods condi-
tioned on flood extent data, Hydrological Processes, 18, 
3347–3370.

Beven, K J, 2002, Towards a coherent philosophy for environ-
mental modelling, Proc. Roy. Soc. Lond. A, 458, 2465–
2484.



163VATTEN · 3-4 · 10

Beven, K J, 2006, A manifesto for the equifinality thesis,  
J. Hydrology, 320: 18–36.

Beven, K J, 2009, Environmental Modelling: An Uncertain 
Future? Routledge, London (see www.uncertain-future.org.uk)

Di Baldassarre, G, Schumann, G, Bates, P, Freer, J, and Beven, 
KJ, 2010, Floodplain mapping: a critical discussion of 
deterministic and probabilistic approaches, Hydrological 
Sciences J., in press.

Faulkner, H, Parker, D, Green, C and Beven, KJ, 2007, Devel-
oping a trtanslationary discourse to communicate uncer-
tainty in flood risk between science and the practitioner, 
Ambio, 36: 692–703.

Lamb R, Crossley M, and Waller S, 2009, A fast two-dimen-
sional floodplain inundation model, Proc. Instn. Civ. Engrs. 
Water Management, 162: 363–370.

Leedal, D T, J. Neal, K. Beven, P. Young and P. Bates, 2010, 
Visualization approaches for communicating real-time 
flood forecasting level and inundation information, J. Flood 
Risk Management, 3: 140–150

Mason, DC, Cobby, DM, Horritt, MS and Bates, PD, 2003, 
Floodplain friction parameterization in two-dimensional 
river flood models using vegetation heights derived from 
airborne scanning laser altimetry, Hydrological Processes, 17: 
1711–1732.

Mason, DC, Bates, PD and Amico, JTD, 2009, Calibration of 
uncertain flood inundation models using remotely sensed 
water levels, J. Hydrology, 368: 224–236. 

O’Hagan A and Oakley, J, 2004, Probability is perfect but we 
can’t elicit it perfectly, Reliability Engineering and System 
Safety, 85: 239–248.

Pappenberger, F., Beven, K., Horritt, M., Blazkova, S., 2005, 
Uncertainty in the calibration of effective roughness 

parameters in HEC-RAS using inundation and down-
stream level observations, Journal of Hydrology, 302, 46–69.

Pappenberger, F, Harvey, H, Beven K, Hall, J and Mead-
owcroft, I, 2006, Decision tree for choosing an uncertainty 
analysis methodology: a wiki experiment http://www.
floodrisknet.org.uk/methods http://www.floodrisk.net, 
Hydrological Processes, 20, 3793–3798.

Pappenberger, F., Beven, K.J., Frodsham, K., Romanovicz, R. 
and Matgen, P., 2007a. Grasping the unavoidable subjec-
tivity in calibration of flood inundation models: a vulner-
ability weighted approach. Journal of Hydrology, 333, 275–
287.

Pappenberger, F., Frodsham, K., Beven, K J, Romanovicz, R. 
and Matgen, P., 2007b. Fuzzy set approach to calibrating 
distributed flood inundation models using remote sensing 
observations. Hydrology and Earth System Sciences, 11(2), 
739–752.

Romanowicz, R., K.J. Beven and J. Tawn, 1996, Bayesian cali-
bration of flood inundation models, in M.G. Anderson, 
D.E.Walling and P. D. Bates, (Eds.) Floodplain Processes, 
333–360

Romanowicz, R and Beven, K J, 1998, Dynamic real-time pre-
diction of flood inundation probabilities, Hydrol. Sci. J., 
43(2), 181–196.

Romanowicz, R. and Beven, K. J., 2003, Bayesian estimation 
of flood inundation probabilities as conditioned on event 
inundation maps, Water Resources Research, 39(3), W01073, 
10.1029/2001WR001056

Werner, MGF, Hunter, NM and Bates, PD, 2005, Identifiabil-
ity of distributed floodplain roughness values in flood ex-
tent estimation, J. Hydrology, 314: 139–157.

 



164 VATTEN · 3-4 · 10


