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PROGNOSTISERING AV KOMBINERAT  
AVLOPPSVATTENFLÖDE MED X-BANDRADAR OCH 
NEURALA NÄTVERK – EN FALLSTUDIE I LUND
FORECASTING COMBINED SEWER FLOW USING X-BAND 
RADAR WITH A NEURAL NETWORK – A CASE STUDY IN 
LUND
 
 

Abstract
This study aimed to forecast combined sewer flow into a wastewater treatment plant in Lund, Sweden 
by using uncalibrated X-band radar data with a neural network. Neural networks have proved themselves 
useful in the field of forecasting as they can solve multiple kinds of problems and recognise patterns in the 
data as well as model complex real-world problems. In 2018, an X-band radar unit was installed in the 
proximity of Lund which provides precipitation data with high spatial resolution, thus making it suitable 
for studying precipitation events on a smaller scale. The study concluded that it is possible to accurately 
forecast combined sewer flow up to 1 h ahead of time by only using input variables connected to the 
catchment of the treatment plant. It was indicated that the prediction time could potentially be extended 
by adding forecasts of the precipitation as input to the network. The most important input variables were 
information about the sewage system, a nearby watercourse, the flow at the plant itself as well as infor-
mation from a rain gauge. The radar is affected by attenuation, degrading the performance of the neural 
network during large flows.

Keywords: X-band radar, neural network, combined sewer flow

Sammanfattning
Denna studie syftade till att prognostisera det kombinerade spillvattenflödet in till reningsverket i Lund 
genom att använda okalibrerad X-bandradardata tillsammans med ett neuralt nätverk. Neurala nätverk 
har visat sig vara användbara inom prognostisering då de kan lösa en mängd olika problem genom att 
identifiera mönster i data och även modellera komplexa naturliga fenomen. År 2018 installerades en 
X-bandradarenhet i närheten av Lund som förser området med högupplöst nederbördsdata vilken är 
lämplig att använda vid analys av regnhändelser på mindre ytor. Studien slog fast att det är möjligt att göra 
noggranna prognoser av kombinerat spillvattenflöde upp till 1 timme in i framtiden genom att endast 
använda variabler knutna till reningsverkets avrinningsområde. De mest hjälpsamma variablerna för att 
förbättra prognosen var information om spillvattenflödet i avloppsnätet, flödet i ett närliggande vatten-
drag, inflödet till Källby reningsverk samt nederbördsinformation från närliggande regnmätare. Radarn 
påverkas av attenuering, vilket försämrar prognoserna vid stora flöden.
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Introduction
Källby wastewater treatment plant is located in Sca-
nia in southern Sweden and it treats the wastewater 
from the city of Lund and surrounding villages. As 
parts of the sewer system in Lund consist of com-
bined sewers, the inflow to the treatment plant 
does not only consist of wastewater but also storm-
water. The sewer types in Lund is visible in figure 
1. This means that in case of a large rain event, the 
inflow to the treatment plant may increase greatly 
which is troublesome as the plant operates best at a 
stable inflow of water. To avoid problems and ease 
the operations at the plant, a forecast of the inflow 
is of great value to know the severity of what is to 
come. An indication of when the flow is about to 
increase due to a rain event could also be used to 

monitor the flow status in the entire sewer system 
and further warn when there is risk of flooding or 
combined sewer overflow.

In the summer of 2018, an X-band radar unit 
was installed in Dalby, 10 km southeast of Lund. 
The X-band radar produces large quantities of data 
that requires treatment such as a bias-correction, 
which makes it inconvenient and time consuming 
to use with a conventional physics-based model. 
However, there are other types of models called 
neural networks, that excel at using large data sets 
and do not need extensive pre-processing of the 
data. 

Neural networks have become popular in many 
different kinds of research fields including fore-
casting, as they provide benefits compared to other 

Figure 1. Division of sewer type in Lund. Red indicates separated sewers and yellow indicates combined sewers.
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conventional methods. Zhang (1998) and Hill et 
al. (1993) argue that neural networks could per-
form well, or even outperform, classical models in 
tasks related to forecasting. However, the neural 
network approach is by many still seen as some-
thing more experimental in engineering practice 
and is unfortunately therefore not very common 
in practical applications. However, this is subject 
to change as large progress is being made in the 
field of machine learning, refining the models and 
allowing use in new applications. 

Previous studies on the X-band radar in Dalby 
have been done by Hedell and Kalm (2019), who 
combined neural networks and radar data for grid 
points to evaluate the potential to use the network 
for urban flood forecasts. Further, Olsson (2019) 
used the X-band radar data to simulate runoff 
with a MIKE URBAN model. Both studies gave 
promising results for the application of the Dalby 
X-band radar in urban hydrology.

The purpose of this paper is to evaluate the po-
tential to forecast the inflow to Källby wastewater 
treatment plant with a neural network, by using 
spatially aggregated X-band radar data together 
with other input variables. The paper mainly aims 
to investigate how far into the future a reliable 
forecast can be made, which variables are most use-
ful to produce a qualitative forecast and lastly see if 
the X-band radar data alone is enough information 
for the network to make a good forecast. The pres-
ent paper is based on a Master Thesis (Faust and 
Nelsson, 2020), where more detailed information 
can be found.

Method, Model and Data Treatment
The Neural Network
A neural network is a data driven model that tries 
to mimic the human brain in a sense that nodes, 
similar to neurons, make up the model in different 
layers. The nodes are arranged in one input layer, 
one or several hidden layers and an output layer. 
The input information passes through the layers 
and the output layer finally produces a prediction 
of the most likely output, solely based on histori-
cal data which has been used to set up the model 
(Zhang, 2012; Solomatine et al., 2008). This ap-

proach enables the model to solve multiple kinds 
of problems and recognise patterns in the data 
(Alemu et al., 2018). There is a weight connected 
to each node which is constantly changed as the 
network is optimised in a process called training. 
The training aims to minimise the error between 
the model’s prediction and the target that it tries to 
predict, all in order to change the weights connect-
ed to the nodes in an optimal way (Zhang, 2012). 
This means that the weights in the hidden layer(s) 
are tweaked and iterated until the output is consid-
ered most satisfactory. The network is trained on a 
data set and after tested on an independent data set 
to verify the output of the model. Further, a valida-
tion is included in the training which also evaluates 
the output of the network (Zhang, 2012).

The neural network in this project is Py-
thon-based in the platform Tensorflow and was 
developed by the company Informetics (Copen-
hagen, Denmark). The model has one hidden lay-
er with 8 nodes and produces a forecast 60 min 
ahead of time if nothing else is specified. Certain 
features are built into the script to improve the per-
formance of the model, such as sine functions with 
periods corresponding to the length of 1 day and 
1 week. These were implemented with the purpose 
to represent the daily and weekly patterns that the 
wastewater flow generally shows.

X-Band Radar
Precipitation data is the main input to the network 
and is measured with a weather radar. Whereas a 
conventional rain gauge measures the accumulated 
volume of precipitation in a container, the weath-
er radar measures the reflectivity of rain particles 
in the air (Einfalt et al., 2004) as the radar unit 
rotates and scans the air in 360 degrees at several 
inclinations, giving an almost full picture of the 
atmosphere (South et al., 2019). A special kind of 
radar, well suited for analysing intense rain events 
on a small scale, is the X-band radar. Compared 
to C- and S-band radars, which are commonly 
used in meteorology, an X-band radar provides 
more detailed information about the precipitation 
within a shorter range. Generally, the resolution is 
0.25 – 2 km for C-band, 1 – 4 km for S-band and 
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down to 50 m for the X-band (South et al., 2019). 
The X-band radar unit in Dalby is a Compact 
Dual Polarimetric X-band Doppler weather radar 
WR-2100 with a range of 60 km which rotates at 
a maximum of 16 revolutions per minute with a 
frequency of 9.4 GHz (Furuno, 2020).

Presentation of Cases
As previous studies by Calm & Hedell (2019) and 
Olsson (2019) have shown are there certain issues 
with the radar and the data that it produces. The 
problems mainly concern areas where the precipi-
tation is either vastly overestimated or affected by 
clutter. Because of this, three different cases with 
different spatial aggregations of radar data were 
tested to see if the performance of the network 
is affected by adjusting the spatiality of the radar 
data. The first case included data for the entire 
area aggregated in one large polygon, including the 
malfunctioning areas. The second case was similar 
to the first one, but the malfunctioning areas were 
excluded. The third case used the same area as the 
second case, but the area was further divided into 
four sub-catchments to see if the network benefit-
ed from receiving input individually from separate 
areas. All cases used the hydrological boundary of 
the urban area of Lund, defined by VA SYD, as 
outer catchment boundary. Further, a fourth case 
was used as a reference case which only used pre-
cipitation information from rain gauges and not 
from the radar unit.

Evaluation of Data Variables
Several other input variables additional to the pre-
cipitation information from the radar unit were 
tested. The variables all relate to the catchment in 
different ways and could potentially provide valu-
able information to the network which would im-
prove the forecast. The input variables tested were:

• X-band radar: precipitation information
• Dalby: flow information from sewer system  
 outside of radar coverage
• Höje å: discharge in receiving watercourse
• Wind speed and wind direction near Lund
• Groundwater level variation

• Precipitation information from rain gauges
• Källby: current flow at the WWTP

Method of Analysis
The input variables and their impact on the fore-
casts were evaluated in two ways, by comparing 
the evaluation parameters RMSE, R2 and loss and 
by visually inspecting the performance during the 
peak flows. The loss function is a function display-
ing the error in the model, measuring the differ-
ence between the predicted output and the actual 
value of the target it tries to predict (Wu et al., 
2019). The general performance is well indicated 
by the evaluation parameters but as most days are 
uneventful with no rain, these parameters might 
not evaluate the peak performance satisfyingly. 
The performance during events with large flows is 
of most interest which is why the largest individ-
ual flow events are visually evaluated. During the 
larger flows, the timing and value of the peaks are 
considered of most importance, and not the cor-
rect total volume of discharge. The input variables 
were put together in different tests which further 
were evaluated, see table 1.

Test nr. Input variables

0 Radar

1 Radar, Dalby 

2 Radar, Höje å

3 Radar, Dalby, Höje å

4 Radar, rain gauge

5 Radar, rain gauge, Dalby, Höje å

6 Radar, wind information

7 Radar, groundwater level

8 Radar, Källby

9 Radar, Källby, Dalby, Höje å

10 Radar, rain gauge, Källby, Dalby, Höje å

Table 1. The different tests which all include different 
combinations of input variables.
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The longest possible prediction time with input 
related to Lund was evaluated. A visual inspection 
of the forecast was conducted as the prediction 
time was increased in 15-min steps from 45 min 
to 120 min. Furthermore, the possibility to extend 
the prediction time even further was evaluated. 
Precipitation data from a rain gauge was used as 
a perfect forecast of the precipitation and put 4 
h ahead of time while the prediction time is in-
creased to 4 h. The purpose was to see if the net-
work could produce such a lengthy forecast with 
perfect conditions, which could be useful for many 
purposes and later further studied.

For all different objectives of the project, the 
training period was selected to May – November 
2019 and the validation period December 2019 – 
January 2020.

Results
This results section is an abridged summary of the 
produced results, and only a few, representative  
figures are included. 

Cases
After evaluating the cases with different spatial 
aggregations of radar data it was concluded that 
the first case performed significantly worse than 
the other cases. This indicates that the network 
benefits from removing data from the areas with 

incorrect measurements of the precipitation. Fur-
ther, additional division of the data into sub-catch-
ments had a close to negligible effect on the results. 
Case 3 was concluded the best performing case af-
ter both evaluating the cases visually and with the 
evaluation parameters. The spatial aggregation of 
radar data for case 3 was further used in the evalu-
ation of the tests, illustrated in figure 2. The value 
of the loss can be seen in figure 3 for all tests and 
cases.

Input variables
The network responded differently to the various 
variables tested, as seen in the variation in loss in 
figure 3. Both the groundwater level variation and 
wind information were indicated to not improve 
the forecast by their relatively high loss, which fur-
ther was confirmed by a visual inspection of the 
events. The variation in groundwater level could 
be a process too slow to help forecast the quick 
response of a precipitation event and the network 
further did not seem to find patterns between the 
wind information and measured flow at Källby 
WWTP.

The other input variables tested all improved 
the model in different ways. Figure 4 shows the 
forecasts of tests 0, 1, 2 and 3 where all variables to 
different extents improved the forecast. The pre-
diction from test 3, which included information 

Figure 2. Map of Lund and the sub-catchments used 
when aggregating the radar data. The eastern parts of 
Lund are excluded as the precipitation is not measured 
accurately for these areas.

Figure 3. The loss for each test. A low loss implies a low 
error in the forecasts made by the model in comparison to the 
corresponding value to be forecasted.
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from both Dalby and Höje å, seemed to be closest 
to the target.

After comparing all tests regarding the score 
from the evaluation parameters and by visual in-
spection, it was concluded that the best perform-
ing tests were test 9 and 10. This indicates that the 
model greatly benefits from information about the 
wastewater system (Källby and Dalby), discharge 
in the catchment recipient (Höje å) as well as pre-
cipitation information from nearby rain gauges to-
gether with the radar data. The difference between 
test 9 and 10 is that test 10 included rain gauge 
information. 

Figure 5 illustrates the large rain event on the 
11th of October where test 0, which only used 
radar data, struggled to forecast the peak in the 
evening and overestimated the flow during the day. 
Test 9 and 10 better predicted the flow where test 
10 further outperformed test 9 during the large 
peak at 20.00, likely thanks to the additional rain 

gauge information as the radar is affected by atten-
uation during the heavy rains.

Figure 6 shows a direct comparison of the fore-
casted flow and the measured target flow at Källby 
WWTP for every timestamp in the time period. 
As seen in the figure, the vast majority of the data 
points have values lower than 500 l/s. As indicated 
by the line pattern on the right side of the figure, 
there is a limit for how large flows can be measured 
at Källby WWTP, which is roughly 2 200 l/s.

All tests generally underestimated the flow to 
different extents but test 10 was most accurate as 
the trend line is rather close to the 1:1 line, com-
pared to test 0 and 9. The width of the cloud of 
points indicates the general variation in error for 
all data points. The fairly narrow cloud for test 10 
suggests that the forecasted values do not deviate 
from the respective measured values as much as for 
the other tests. 

The scatter plots give no information about the 

Figure 4. Forecasts made by the models. The black line, the target, is the flow at Källby WWTP which the models try to 
predict. Precipitation is illustrated without units in the top of the figure, just to visualise the timing of the response. The 
curves case3_0, case3_1, case3_2 and case3_3 refer to case 3 of spatial radar aggregation and tests 0, 1, 2, and 3 with 
regard to additional data variables.
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Figure 5. Observed and forecasted flow at Källby WWTP on the 11th of October 2019. 

Figure 6. Forecasted values for tests 0, 9 and 10 in relation to the corresponding measured value for the same timestamp. 
The 1:1 regression is illustrated in blue, and the calculated regression for each test is illustrated in red.
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Figure 7. Two forecasts made with radar data (case 3_0) and rain gauge data (case 4_0) for the precipitation event on the 
11th of October 2019.

Figure 8. Forecasts made with different forecasting times. As the forecasting time increases over 1 h, the forecasts get incre-
asingly delayed.
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timing of the peaks. However, the large number of 
underestimations, including for test 10, indicates 
that the forecasts of the largest flows are regularly 
inaccurate. This is likely due to that the model is 
trained on flows that never exceed 2 200 l/s, when 
they in reality do. Underestimations are also likely 
related to the low quality of the radar data during 
the larger rain events. 

Reference case using rain gauges
A forecast using only radar data is compared with a 
forecast using only rain gauge data. It is concluded 
that without any other sources of input informa-
tion, the rain gauge model outperformed the radar 
one, see figure 7.

The poor performance of the radar forecast is 
likely related to the various issues with the data 
during the larger precipitation events. However, as 
more input variables are added, the performance of 
the radar forecast greatly improved while the rain 
gauge forecast only slightly improved. Further, the 
model that used precipitation information from 
both the radar and rain gauge (test 10) performed 
even better than the other ones.

Investigation of forecasting time
The investigation of the maximal prediction time, 
with input variables related to Lund catchment, 
concluded that it is possible to accurately forecast 
the flow up to 1 h ahead of time. As the prediction 
time increased over 1 h, the quality of the forecasts 
worsened and got gradually delayed, which is illus-
trated in figure 8. There was no major difference 
in the forecasts of the 60- and 45-min prediction, 
which indicates that prediction times lower than 
60-min does not drastically improve the perfor-
mance of the model and that the 60-min forecast 
could be somewhat reliable.

It was further investigated if the forecast time 
could be extended with a perfect forecast of the 
precipitation. As illustrated in figure 9, which 
shows a 4 h forecast, both the timing and the peak 
of the flow is accurate. This indicates that the net-
work indeed is capable of making such a lengthy 
forecast. However, as the prediction is based on a 
perfect precipitation forecast, there are reasons to 
suspect that the neural network would perform 
worse in reality where the forecasts are more un-
certain. 

Figure 9. A 4 h forecast using rain gauge information as a perfect forecast of the precipitation data for the 11th of October 
2019. The black line is the measured flow at Källby WWTP and the thinner grey line is the prediction. The yellow lines 
illustrate precipitation and the purple field is the uncertainty in the prediction.
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Discussion
The finding that a neural network can be trained 
to make hydrological forecasts of waste- and 
stormwater flow based on non-bias-corrected radar 
data is considered a success for the project. Further, 
the results are promising if the low quality of the 
radar data is considered, indicating that the model 
has much room to improve with better data. Käll-
by WWTP was used as a case and in theory the 
relationship between measured precipitation and 
forecasted flow could be applied to many other 
instances. Additionally, the versatility of a neural 
network gives it potential as both an urban plan-
ning and flood warning tool.

However, if the model is to reach its full poten-
tial, the performance is dependent on the quality 
of the radar data. This is also the largest identi-
fied issue in the project, where perhaps the most 
important factor is the observed attenuation effect 
during heavy rains which leads to that no or incor-
rect amounts of precipitation are being recorded. 
This is unfortunate, as heavy rains are the most im-
portant events to study and train for the purpose 
of the project.

Despite the issues related to the radar was it pos-
sible to produce a forecast by only using radar data, 
even though the quality was significantly lower 
compared to the best model that also used multi-
ple other inputs. Depending on the user and their 
demands a forecast like this might still be of use.

Sources of Errors 
Ideally, the measured flow at Källby WWTP is a 
function of only the waste- and stormwater that 
naturally flows into the plant. However, this is 
not the case, as there are technical complications 
and measures taken by operators that affect the in-
flow to the plant. For example, there are several 
pumping stations around the sewage system that 
can regulate the flow. Information about how and 
when these stations operate were not available for 
this project. 

The time period which the network is trained on 
stretched from May 2019 – January 2020, which is 
a relatively short period of time. As the time period 
does not encompass several years, eventual seasonal 

patterns in both the wastewater flow and the pre-
cipitation cannot be captured. A longer time series 
of data would likely have improved the model as 
these issues then would have been addressed. Fur-
ther, the neural network prefers large data series for 
the training process in order to produce an optimal 
model.

Future studies 
This study is limited to only looking at variables 
connected directly to Lund, which may be why 
forecasts longer than 60 min ahead of time could 
not be made satisfactory. To achieve a model with 
longer prediction times, precipitation data from 
areas outside of Lund would be required. In such 
a case, the wind speed and wind direction togeth-
er with precipitation information from these areas 
could be useful information for the network. 

An application that was not included in this 
study, but could be of interest for future studies, 
was to develop a model that calculates the proba-
bility of exceeding a certain forecasted flow at a giv-
en time. A model like this could be programmed to 
give a warning whenever a certain flow is believed 
to be reached with a certain probability. This could 
be used as a safety measure which always would be 
running in the background at for example, Källby 
WWTP.

Furthermore, a similar study with higher quality 
radar data could be conducted to investigate the 
true potential of the neural networks ability to 
forecast the flow. As of now, precipitation infor-
mation from a rain gauge is more reliable than the 
information from the radar during large precipita-
tion events. This could be a subject of change, or 
the gap between the data sources could at least be 
slightly bridged, if the radar is properly calibrated.

Conclusions
The purpose of the study was to evaluate the po-
tential to forecast the inflow to Källby WWTP by 
using X-band radar data with a neural network. 
The study concluded that it is possible to train a 
neural network with non-bias-corrected radar data 
to forecast the flow up to 60 min ahead in Lund. 
Prediction times longer than 60 min degraded the 
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result and caused a delay in the forecast. It was 
further indicated that the prediction time could 
potentially be increased by adding forecasted or 
measured precipitation information from areas 
outside of Lund.

The performance of the model was improved by 
adding more input variables, and the combination 
of variables that gave the best performance was: 

• precipitation information from X-band radar
• flow information from sewer system outside of 
 radar coverage (Dalby)
• discharge in receiving watercourse (Höje å)
• rain gauge information
• current flow at the WWTP (Källby)

The model using only rain gauge information 
performed better than the model using only radar 
data, which is believed to be mainly related to at-
tenuation issues in the radar data. As a rain gauge 
provides more consistent data for high-intensity 
rainfalls, it might be more reliable for the neural 
network. However, a model combining both ra-
dar and rain gauge data performed even better as 
it benefits from both the spatially high-resolution 
radar and the consistent performance of the rain 
gauge, especially when attenuation is affecting the 
radar. 

For the purpose of forecasting, aggregating the 
radar data in sub-catchments instead of one large 
catchment made little, if any, improvements to the 
result. However, removing areas with problems 
connected to the radar data was important for the 
performance of the model. 

It was possible to make a forecast by only using 
radar data, although it yielded significantly worse 
results without the other input variables. Howev-
er, depending on the purpose and demands of the 
user, a forecast like this might still be useful.
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