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Abstract
Theoretical studies of the movement of moisture in an unsaturated zone are associated with the analysis 
of the Richards equations. The corresponding mathematical problems are designed to answer practical 
questions related to the replenishment of groundwater reserves, the degree of their protection from pollu-
tion coming from the surface, and the needs of agriculture. The value of surface recharge   appears in the 
problems as a boundary condition at the upper boundary of the soil. It depends on weather conditions, 
which leads to significant non-stationarity of the infiltration processes. At the same time, for a broad class 
of surface feeding modes, fluctuations of moisture flows are smoothed out with depth. The depth at which 
fluctuations in the moisture flow become negligible and the flow becomes almost stationary is of interest 
for many practical applications. In this work, explicit formulas are derived analytically for this depth, 
expressing its value through the filtration parameters of the medium and the characteristics of the mode 
of moisture ingress into the soil.

Sammanfattning
Teoretiska studier av fuktrörelser i den omättaade zonen kan kopplas till Richards ekvation.Korrespond-
erande matematiska problem besvarar praktiska frågor relaterade till tillflöde till grundvattenreservoarer 
och hur de skyddas från ytföroreningenar, samt jordbruksnäringens vattenbehov. Randvillkoret på övre 
gränsen av markytan utgörs av vattenmängden som distribueras till densamma. Således varierar detta 
med vädret, vars variationer leder till signifikanta variationer i infiltrationsprocesserna. Djupet på vilket 
fluktuationer i fuktrörelserna blir försumbara har många intressanta praktiska tillämpningar. I detta  
arbete härleds formler för detta djup analytiskt och dess värde uttrycks genom de paramterar som beskriver 
markens infiltrationsegenskaper och det sätt på vilket vattnet distribueras; lågintensivt dagsregn, häftig 
åskskur, med mera.
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Introduction
The unsteady nature of precipitation results in un-
even infiltration of atmospheric moisture into the 
unsaturated soil zone. This leaves an imprint on 
the movement of moisture from the surface of the 
earth to groundwater. The distribution of moisture 
in the soil and its flows in depth and time deter-
mines such parameters of these processes as the 
amount of groundwater recharge and the time it 
takes for moisture to reach their surface. The re-
search on the unsteady motion of water in the un-
saturated ground has a rich history. The theoretical 
part of them is connected with the analysis of the 
Richards equation and its various modifications. 
The corresponding mathematical problems are de-
signed to answer practical questions related to the 
replenishment of groundwater reserves, the degree 
of their protection from pollution coming from the 
surface, and the needs of agriculture. In this article, 
the mathematical problem of vertical infiltration of 
moisture during its impulse flow through the up-
per boundary of the soil is investigated analytically.

The amount of surface recharge, which is used 
as a boundary condition at the upper boundary of 
the soil, is determined not only by the intensity of 
atmospheric precipitation but also depends on the 
microrelief, soil condition, and weather conditions. 
Unfortunately, direct measurement of this quantity 
is complex, and in field conditions, it is impossible. 
Therefore, the quantitative relationship between it 
and the precipitation regime is unknown. At the 
same time, if the problem of the impulse input of 
moisture into the soil is associated with infiltration 
due to a single rainfall, then at the qualitative level 
it is evident that the duration of the impulse should 
be the longer, the longer the rain and the amplitude 
of the supply should increase with the increase in 
its intensity. The paper considers instances of pres-
sure and non-pressure pulses supply. The latter can 
be interpreted as a consequence of heavy precipita-
tion with the formation of puddles on the earth’s 
surface.

To assess the protection of groundwater, an es-
sential characteristic of the infiltration process is 
the rate of movement of moisture in the ground. 
It determines the time it takes for moisture parti-

cles and pollutants dissolved to reach groundwa-
ter’s surface. For stationary modes of infiltration, in 
many textbooks, monographs, and manuals on the 
theory of filtration (Bindeman, 1963, Goldberg, 
1984, Belousova, 2006), a simple formula of the 
form is derived for this quantity:

	 (1)

where      and            are constants and  
depend on the filtration parameters of the soil, and  
R is the constant value of the feed entering the soil 
from the surface. If the infiltration process is es-
sentially non-stationary, then formula (1) becomes 
inapplicable. Nevertheless, if the fluctuations of 
moisture fluxes are smoothed out with depth in the 
process of infiltration, then the unsteady movement 
of moisture manifests itself only in the near-sur-
face zone of the soil. Outside this zone (provided 
that its bottom is located above the surface of the 
groundwater), the speed of moisture movement 
can be estimated using stationary formulas. 

In this article, the influence of the non-stationari-
ty of the magnitude of the surface supply R=R (t) of 
the pulsed type on the distribution of moisture and 
moisture flows over depth and time is studied. The 
results and conclusions are substantiated by con-
structing exact and approximate analytical solutions 
and are also illustrated numerically. 

An essential qualitative conclusion to be drawn 
from the analysis of the solutions is that the pulsed 
mode, the infiltration of moisture and moisture dis-
tribution flow with increasing depth and is aligned 
closer to stationary. In this case, two physical mech-
anisms stabilise the flow: capillary dissipation and 
nonlinear dispersion of irregularities in the moisture 
profile. The depth below which the flow is stabilised 
and can be considered stationary depends on the pa-
rameters characterising the mode of moisture intake 
and the filtration properties of the soil. The main 
goal of our research is to calculate this depth. In this 
work, simple explicit formulas were derived for it, by 
which it is possible to estimate this depth for various 
values of the parameters. The formulas also contain 
the threshold value of the fluctuation amplitude, be-
low which they can be considered insignificant.
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The problem of water infiltration into the soil 
required to determine the dependence of the water 
saturation                           and moisture flow q on time 
t and depth z. These functions satisfy the mass 
conservation equation and the Darcy relation 

	 (2)

where m - porosity, K - coefficient of filtration 
rate in saturated soil,       - relative permeability,           
               - water pressure. Here and everywhere in 
what follows, it is assumed that the value p is meas-
ured from atmospheric pressure and is normalised 
to the specific gravity of water, and the axis z is 
directed vertically downward.

Further in the article, the effects associated with 
the influence of residual water saturation on the 
infiltration process will not be considered. In this 
case, the relative permeability       for liquids wet-
ting the soil is usually given by a power-law for-
mula of the form              with some indicator 
         (its most popular value is         ).

To complete equations (2), it is necessary to 
set the relationship between water saturation and 
pressure. In the Richards model (see J. Bear, 1971, 
Ch. 9), it is assumed that in the water-saturated 
flow zone       and      , and in the unsaturated  
zone    and        , where      is an  
empirical function decreasing by    , called capillary 
pressure. For the capillary function           infil-
tration models, various explicit dependencies are 
used, for example, the Brooks and Corey power 
formula: 

 	 (3)

where h- dimensional constant, by order of mag-
nitude corresponding to the typical height of the 
capillary rise of water in the soil pores, and the in-
dex       depends on the particle size distribution  
of the porous medium.

Equation (2) have a family of simple stationary 
solutions of the form

	 (4)

describing the infiltration of moisture at a rate 
constant in-depth and time, calculated by a formula 
               that coincides with  
equality (1).

Consider for the original nonlinear equation 
(2) the problem with time-dependent infiltration            
     into the soil of infinite depth 
               As a condition at an infinite depth, we 
assume that the solution tends to a uniform flow 
(4) at                Let the same value of water sat-
uration      be the initial condition                .  
Figures 1 and 2 show the results of a numerical cal-
culation of water saturation profiles                    over 
depth at different points in time for infiltration   
       of an impulse type.

     	 (5)

Fig. 1. Calculated profiles of water saturation in the non-
stationary infiltration problem with pulsed admission of 
moisture in the ground (h = 0.2 m)

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
 

                                                 (2) 

 

where - porosity, - coefficient of filtration rate in saturated soil, - relative permeability, 

- water pressure. Here and everywhere in what follows, it is assumed that the value  is 

measured from atmospheric pressure and is normalised to the specific gravity of water, and the axis

 is directed vertically downward. 

Further in the article, the effects associated with the influence of residual water saturation on the 

infiltration process will not be considered. In this case, the relative permeability  for liquids 

wetting the soil is usually given by a power-law formula of the form  with some indicator 

 (its most popular value is ). 

To complete equations (2), it is necessary to set the relationship between water saturation and 

pressure. In the Richards model (see [J. Baer, 1971, Ch. 9), it is assumed that in the water-saturated 

flow zone  and , and in the unsaturated zone and , where is an 

empirical function decreasing by , called capillary pressure. For the capillary function  

)(tRR =

q 10 ££ q q t z

,0=
¶
¶

+
¶
¶

z
q

t
m q ,1)( ÷

ø
ö

ç
è
æ

¶
¶

-=
z
pKkq q

m K )(qk

),( ztpp = p

z

)(qk

bqq =)(k

1>b 3=b

1=q 0³p 1<q )(qcPp -= )(qcP

q )(qcP

infiltration models, various explicit dependencies are used, for example, the Brooks and Corey 

power formula:  
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describing the infiltration of moisture at a rate constant in-depth and time, calculated by a formula 

 that coincides with equality (1). 

Consider for the original nonlinear equation (2) the problem with time-dependent infiltration 

 into the soil of infinite depth . As a condition at an infinite depth, we 

assume that the solution tends to a uniform flow (4) at . Let the same value of water 

saturation be the initial condition . Figures 1 and 2 show the results of a numerical 

calculation of water saturation profiles  over depth at different points in time for 

infiltration of an impulse type. 
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saturation be the initial condition . Figures 1 and 2 show the results of a numerical 

calculation of water saturation profiles  over depth at different points in time for 

infiltration of an impulse type. 
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(provided that its bottom is located above the surface of the groundwater), the speed of moisture 

movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
of the pulsed type on the distribution of moisture and moisture flows over depth and time is studied. 

The results and conclusions are substantiated by constructing exact and approximate analytical 

solutions and are also illustrated numerically.  

An essential qualitative conclusion to be drawn from the analysis of the solutions is that the pulsed 

mode, the infiltration of moisture and moisture distribution flow with increasing depth and is 

aligned closer to stationary. In this case, two physical mechanisms stabilise the flow: capillary 

dissipation and nonlinear dispersion of irregularities in the moisture profile. The depth below which 

the flow is stabilised and can be considered stationary depends on the parameters characterising the 

mode of moisture intake and the filtration properties of the soil. The main goal of our research is to 

calculate this depth. In this work, simple explicit formulas were derived for it, by which it is 

possible to estimate this depth for various values of the parameters. The formulas also contain the 

threshold value of the fluctuation amplitude, below which they can be considered insignificant. 

The problem of water infiltration into the soil required to determine the dependence of the water 

saturation  ( ) and moisture flow  on time  and depth . These functions satisfy the 

mass conservation equation and the Darcy relation  
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movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
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movement can be estimated using stationary formulas.  

In this article, the influence of the non-stationarity of the magnitude of the surface supply  
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In the examples considered for the parameter h 
that characterizes the scale of capillary forces, the 
values of 0.05 m and 0.2 m are taken. The other 
parameters of the problem are given as follows

Here, the impulse mode of moisture ingress into 
the soil is characterised by the duration T and am-
plitudes R1, R0  impulse and background, respec-
tively. With the considered infiltration mode, the 
distribution of moisture and moisture flow levels 
out over time and approaches the stationary one. 
The characteristic value of the depth below which 
the flow is stabilised and can be considered station-
ary depends on the parameters characterising the 
moisture intake mode and the soil’s filtration prop-
erties. In this case, two physical mechanisms sta-
bilise the flow: capillary dissipation and nonlinear 
dispersion of irregularities in the moisture profile. 
If both mechanisms work together, then it is im-
possible to describe the stabilisation of solutions in 
an explicit form, and only numerical experiments 
remain available. In this case, the problem of im-
pulse infiltration contains too many parameters 
for the numerical estimates of the desired stabilisa-
tion depth to be universal. On the other hand, the 
Richards equations have neither exact self-similar 
solutions suitable for this problem nor, moreover, 
general expressions that make it possible to find 
a solution for an infiltration pulse R(t) of a more 
or less arbitrary shape. This makes the problem of 
constructing analytical estimates for the desired 
stabilisation depth nontrivial.

If one of the factors, nonlinearity or capillarity, 
dominates, while the other can be neglected, then 
the problem’s solution is in a form convenient for 
its study. Considering the influence of only cap-
illary forces on the stabilisation of the flow for 
equations (2), (3) can be investigated through 
their linearisation. A necessary condition, in this 
case, is the ratio                                       , i.e.,  
for infiltration into dry soil, the Richards equa-
tions are not linearised). Usually, the experimental 
accuracy of determining the filtration values is low; 

therefore, in practice, when this condition is met, 
it is difficult to distinguish a steady flow from a 
non-steady flow. Because of this, the applied value 
of the linear approximation is small. It nevertheless 
plays a role in theoretical questions, for example, 
in studying problems of the stability of solutions. 
If the capillary forces are neglected in the Rich-
ards equations, then the order of these equations 
will decrease and the infiltration problem is solved 
in an explicit, albeit cumbersome way for a broad 
class of given moisture fluxes R(t). 

Below, we investigate the infiltration problem 
for linearised and capillary-free problems and pro-
pose a method for adding the effects of capillary 
dissipation and nonlinear scattering for problems 
when these factors act together. As a result, for-
mulas are derived to estimate the depth of the in-
fluence of unsteady power supply fluctuations on 
the surface.

Fig. 2. Water saturation profiles in the problem of non-
stationary infiltration with impulse moisture inflow into 
the soil (h = 0.05 m)

infiltration models, various explicit dependencies are used, for example, the Brooks and Corey 

power formula:  
 

,               (3) 
 

where - dimensional constant, by order of magnitude corresponding to the typical height of the 

capillary rise of water in the soil pores, and the index  depends on the particle size distribution 

of the porous medium. 

Equation (2) have a family of simple stationary solutions of the form 
 

                               (4) 
 

describing the infiltration of moisture at a rate constant in-depth and time, calculated by a formula 

 that coincides with equality (1). 

Consider for the original nonlinear equation (2) the problem with time-dependent infiltration 

 into the soil of infinite depth . As a condition at an infinite depth, we 

assume that the solution tends to a uniform flow (4) at . Let the same value of water 

saturation be the initial condition . Figures 1 and 2 show the results of a numerical 

calculation of water saturation profiles  over depth at different points in time for 

infiltration of an impulse type. 
 

     at       and      at         (5) 
 

In the examples considered for the parameter  that characterizes the scale of capillary forces, the 

values of 0.05 m and 0.2 m are taken. The other parameters of the problem are given as follows 
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power formula:  
 

,               (3) 
 

where - dimensional constant, by order of magnitude corresponding to the typical height of the 

capillary rise of water in the soil pores, and the index  depends on the particle size distribution 

of the porous medium. 

Equation (2) have a family of simple stationary solutions of the form 
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describing the infiltration of moisture at a rate constant in-depth and time, calculated by a formula 

 that coincides with equality (1). 

Consider for the original nonlinear equation (2) the problem with time-dependent infiltration 

 into the soil of infinite depth . As a condition at an infinite depth, we 

assume that the solution tends to a uniform flow (4) at . Let the same value of water 

saturation be the initial condition . Figures 1 and 2 show the results of a numerical 

calculation of water saturation profiles  over depth at different points in time for 

infiltration of an impulse type. 
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In the examples considered for the parameter  that characterizes the scale of capillary forces, the 

values of 0.05 m and 0.2 m are taken. The other parameters of the problem are given as follows 
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filtration properties. In this case, two physical mechanisms stabilise the flow: capillary dissipation 

and nonlinear dispersion of irregularities in the moisture profile. If both mechanisms work together, 

then it is impossible to describe the stabilisation of solutions in an explicit form, and only numerical 

experiments remain available. In this case, the problem of impulse infiltration contains too many 

parameters for the numerical estimates of the desired stabilisation depth to be universal. On the 

other hand, the Richards equations have neither exact self-similar solutions suitable for this problem 

nor, moreover, general expressions that make it possible to find a solution for an infiltration pulse 

 of a more or less arbitrary shape. This makes the problem of constructing analytical estimates 

for the desired stabilisation depth nontrivial. 

If one of the factors, nonlinearity or capillarity, dominates, while the other can be neglected, then 

the problem's solution is in a form convenient for its study. Considering the influence of only 

capillary forces on the stabilisation of the flow for equations (2), (3) can be investigated through 

their linearisation. A necessary condition, in this case, is the ratio  (for  , 

i.e., for infiltration into dry soil, the Richards equations are not linearised). Usually, the 

experimental accuracy of determining the filtration values is low; therefore, in practice, when this 

condition is met, it is difficult to distinguish a steady flow from a non-steady flow. Because of this, 

the applied value of the linear approximation is small. It nevertheless plays a role in theoretical 

questions, for example, in studying problems of the stability of solutions. If the capillary forces are 

neglected in the Richards equations, then the order of these equations will decrease and the 

infiltration problem is solved in an explicit, albeit cumbersome way for a broad class of given 

moisture fluxes  .  

Below, we investigate the infiltration problem for linearised and capillary-free problems and 

propose a method for adding the effects of capillary dissipation and nonlinear scattering for 

problems when these factors act together. As a result, formulas are derived to estimate the depth of 

the influence of unsteady power supply fluctuations on the surface. 

 

Exact analytical solution of the infiltration problem in the linearised setting 
Linearisation of the problem of impulse infiltration near the stationary solution (4) leads to the 

following relations for fluctuations in water saturation and flow: 
 

           (6) 
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where   Impulse modes of moisture supply to 

the soil correspond to such nonnegative fluctuations of supply  , which vanish starting from a 

specific moment .  

The general solution of this linear problem can be represented as Duhamel's integral: 
 

                (7) 

 

where dimensionless functions of dimensionless variables  and  are solutions to the 

problem 
 

             (8) 

 

      
 

with a point source at as the boundary condition for the function  . This model problem 

is solved explicitly using the Laplace transform (Abramovitz, 1964). In particular, 
 

                     (9) 

 

The expression for the function  is also found explicitly, but contains, in addition to 

elementary functions, the integral of probabilities. The qualitative behaviour of the quantities 

 and  as functions of  at fixed  is shown in Fig. 3. 
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Exact analytical solution of the infiltration problem 
in the linearised setting
Linearisation of the problem of impulse infiltra-
tion near the stationary solution (4) leads to the 
following relations for fluctuations in water satu-
ration and flow:

	 (6)

         

where 

Impulse modes of moisture supply to the soil 
correspond to such nonnegative fluctuations of 
supply r(t), which vanish starting from a specific 
moment t=T. 

The general solution of this linear problem can 
be represented as Duhamel’s integral:

	 (7)

where dimensionless functions of dimension-
less variables                      are solutions to the  
problem

	 (8)

       

with a point source at z=0 as the boundary con-
dition for the function Q(t,z). This model prob-
lem is solved explicitly using the Laplace transform 
(Abramovitz, 1964). In particular,

	 (9)

The expression for the function         is also 
found explicitly, but contains, in addition to el-
ementary functions, the integral of probabili-
ties. The qualitative behaviour of the quantities    
                as functions of t at fixed z is  
shown in Fig. 3.

 

Fig. 3. Qualitative form of dependence of functions Q (t,z)
and    (t,z) on the dimensionless time t.

As the dimensionless depth z increases, the max-
ima along with the t functions Q(t,z) and  (t,z)  
decreases and shifts to the right along the axis t. 
At large z, the position of this maximum of the 
function Q(t,z) and its value are calculated by the 
approximate formulas

	 (10)

For what follows, the following integral relations 
will be needed, which can be obtained both using 
formula (9) and directly from equations (8):

	 (11)

An integral representation of the general solu-
tion of the problem in the form (7) allows one to 
study the asymptotics of solutions in various pa-
rameters. For example, for large values of time t, 
the functions Q and    on the interval of integration     
             with respect to   are almost constant, 
therefore, for  

filtration properties. In this case, two physical mechanisms stabilise the flow: capillary dissipation 

and nonlinear dispersion of irregularities in the moisture profile. If both mechanisms work together, 

then it is impossible to describe the stabilisation of solutions in an explicit form, and only numerical 

experiments remain available. In this case, the problem of impulse infiltration contains too many 

parameters for the numerical estimates of the desired stabilisation depth to be universal. On the 

other hand, the Richards equations have neither exact self-similar solutions suitable for this problem 

nor, moreover, general expressions that make it possible to find a solution for an infiltration pulse 

 of a more or less arbitrary shape. This makes the problem of constructing analytical estimates 

for the desired stabilisation depth nontrivial. 

If one of the factors, nonlinearity or capillarity, dominates, while the other can be neglected, then 

the problem's solution is in a form convenient for its study. Considering the influence of only 

capillary forces on the stabilisation of the flow for equations (2), (3) can be investigated through 

their linearisation. A necessary condition, in this case, is the ratio  (for  , 

i.e., for infiltration into dry soil, the Richards equations are not linearised). Usually, the 

experimental accuracy of determining the filtration values is low; therefore, in practice, when this 

condition is met, it is difficult to distinguish a steady flow from a non-steady flow. Because of this, 

the applied value of the linear approximation is small. It nevertheless plays a role in theoretical 

questions, for example, in studying problems of the stability of solutions. If the capillary forces are 

neglected in the Richards equations, then the order of these equations will decrease and the 

infiltration problem is solved in an explicit, albeit cumbersome way for a broad class of given 

moisture fluxes  .  

Below, we investigate the infiltration problem for linearised and capillary-free problems and 

propose a method for adding the effects of capillary dissipation and nonlinear scattering for 

problems when these factors act together. As a result, formulas are derived to estimate the depth of 

the influence of unsteady power supply fluctuations on the surface. 
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the soil correspond to such nonnegative fluctuations of supply  , which vanish starting from a 

specific moment .  

The general solution of this linear problem can be represented as Duhamel's integral: 
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is solved explicitly using the Laplace transform (Abramovitz, 1964). In particular, 
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The expression for the function  is also found explicitly, but contains, in addition to 

elementary functions, the integral of probabilities. The qualitative behaviour of the quantities 
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Fig. 3. Qualitative form of dependence of functions and on the dimensionless time . 

As the dimensionless depth increases, the maxima along with the  functions  and 

decreases and shifts to the right along the axis . At large , the position of this maximum of the 

function and its value are calculated by the approximate formulas 
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where   Impulse modes of moisture supply to 

the soil correspond to such nonnegative fluctuations of supply  , which vanish starting from a 

specific moment .  

The general solution of this linear problem can be represented as Duhamel's integral: 
 

                (7) 

 

where dimensionless functions of dimensionless variables  and  are solutions to the 

problem 
 

             (8) 

 

      
 

with a point source at as the boundary condition for the function  . This model problem 

is solved explicitly using the Laplace transform (Abramovitz, 1964). In particular, 
 

                     (9) 

 

The expression for the function  is also found explicitly, but contains, in addition to 

elementary functions, the integral of probabilities. The qualitative behaviour of the quantities 

 and  as functions of  at fixed  is shown in Fig. 3. 
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From this, in particular, it follows that at great 
depths (more precisely, at 

	 (12)

Thus, at significant times and depths, all details 
of the behaviour of the initial feed pulse r(t) (ex-
cept for the total volume of additional moisture 
supplied with the pulse M) cease to be significant, 
and the solution profiles d are determined by the 
standard functions Q and    .

Relations (12) make it possible to express the 
value of the depth, starting from which the am-
plitudes of the solutions of the linearised prob-
lem become sufficiently small, i.e. do not exceed 
a particular predetermined threshold value. These 
asymptotics, however, are not uniform in the re-
maining parameters of the problem. To get around 
this problem, it is convenient to monitor not the 
magnitude and position of the maxima of the solu-
tions, but the behaviour of some integral charac-
teristics of the moisture flow. For this purpose, we 
define the following values:

Functions       and        have the meaning  
of the characteristic time lag pulse infiltration to 
the depth and the square of its characteristic length 
at this depth, and          - the effective flow char-
acteristic amplitude. From the integral representa-
tion of Duhamel (7) and relations (11), explicit 
formulas can be easily derived

	 (13)

where   and    are the corresponding  
moments of the feed given on the surface      . 
In the case of a power supply mode specified in 
the form of a rectangular step (5),                  and   
                       .

The coefficient    in the definition of the 
 integral quantity       is chosen so that at     
    the effective amplitude of the flow    
        asymptotically coincides with its pres-
ent amplitude by formula (12). In this case, the 
constant         can be chosen so that the value         
        coincides with the given pulse amplitude 
on the surface, i.e. with maximum function r(t). 
For power R(t) specified in the form of a step (5)    
                                   . Since the effective amplitude, 
in contrast to the present, is determined by the 
data of the linearised problem of a simple explicit 
formula , it is helpful for estimating the depth of 
the effect of unsteadiness surface recharge.

Explicit solution of the infiltration problem in the 
capillary-free approximation
The model, which is obtained from the formal 
limit of the Richards equations (2 - 3) at            , i.e. 
their capillary-free version was proposed in (J.R. 
Philip, 1954). This model turned out to be useful 
for substantiating the method for processing ex-
perimental data on infiltration, which appeared in 
earlier work (Green, 1911), named after its authors 
is called the Green and Ampt model (see Philip, 
1969, Egorov, 2003, Chen, 2015). The rigorously 
mathematically correctness of the passage to the 
limit for          in the Richards equations was 
proved for stationary problems in (Belyaev, 2015, 
Alt, 1979, Beliaev, 2015, and for non-stationary 
problems, in Alt, 1984).

In the Green and Ampt model, the filtration 
equations (2) and the phenomenological formula 
for the relative permeability       are retained in 
their previous form, and instead of capillary equal-
ity (3), the relationship between pressure and water 
saturation uses the relations

	 (14)

For solutions of equations (2), (15), the plane 
of independent variables (t,z) is divided into previ-
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Functions  and  have the meaning of the characteristic time lag pulse infiltration to the 

depth and the square of its characteristic length at this depth, and  - the effective flow 

characteristic amplitude. From the integral representation of Duhamel (7) and relations (11), explicit 

formulas can be easily derived 
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For solutions of equations (2), (15), the plane of independent variables  is divided into 

previously unknown regions, which correspond to saturated flow zones ( , ), partially 

saturated ( , ) and dry ( , ). At the boundaries of the zones, the pressure 

continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 

that in saturated zones the flow  depends only on time, and the pressure is a linear function . In 

a dry zone, all the required functions ,  and  are known and are equal to zero. In a partially 

saturated soil zone  , and equations (2) are reduced to one first-order differential equation of 

the form 
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Fig. 3. Qualitative form of dependence of functions and on the dimensionless time . 

As the dimensionless depth increases, the maxima along with the  functions  and 

decreases and shifts to the right along the axis . At large , the position of this maximum of the 

function and its value are calculated by the approximate formulas 
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ously unknown regions, which correspond to sat-
urated flow zones                   , partially saturated  
             and dry           . At the  
boundaries of the zones, the pressure continuity 
condition and the mass conservation law must be 
satisfied. From equations (2) it follows that in sat-
urated zones the flow q depends only on time, and 
the pressure is a linear function z. In a dry zone, all 
the required functions    , q, p and p are known and 
are equal to zero. In a partially saturated soil zone 
p=0, and equations (2) are reduced to one first-or-
der differential equation of the form

	 (15)

Methods for constructing exact solutions of hy-
perbolic equations have been studied in detail in 
gas dynamics (Loitsiansky L.G., 1987, Ch. 6, Gur-
batov S.N., 2011), as well as in connection with 
problems of nonlinear sorption (Venitsianov E.V., 
1983) and many others. The characteristics z=z(t)
of equation (15) are solutions of the ordinary dif-
ferential equation

	 (16)

From equation (15) it follows that along with 
the characteristics,                         therefore, on 
the characteristics, the water saturation is constant, 
and the characteristics themselves are straightfor-
ward.

Equations (2), (15) can have discontinuous solu-
tions and must be supplemented with conditions 
wherever there are jumps in water saturation. If the 
law of motion of a jump on a plane (t,z) has the 
form z=z(t) and the values of water saturation and 
flow before and after the jump at the moment t are 
equal          and,          respectively, then the law  
of conservation of mass implies the equality

	 (17)

For functions           with a downward convex 
graph, those jumps for which       are not evolu-
tionary, i.e. cannot form due to the evolution of a 
continuous water saturation profile. To ensure the 

uniqueness of the solution to the problem, such 
jumps should be excluded from consideration. 
Thus, the condition on the jump (17) must be 
supplemented by an inequality         . The convexity 
of the function        implies that for allowed jumps, 
i.e. at           , the rupture velocity is less than the 
characteristic velocity               at the points adja-
cent to the rupture behind but greater than before 
the jump.

Using the characteristic equation (16) and the 
condition on discontinuities (17), it is possible to 
construct various exact solutions of the equations 
in a partially saturated medium, gluing them with 
solutions in the saturated and dry zones, if any, and 
along this path to obtain explicit expressions for 
the solutions in the entire area.

In contrast to the linearised model for a power 
supply pulse R(t) of an arbitrary shape, it is not 
possible to derive a unified formula for the general 
solution of a nonlinear capillary-free problem. It 
is relatively simple to construct a solution to this 
problem in the class of functions monotonically 
decreasing in time R(t). We will construct an ex-
act solution to this problem in an explicit form. 
The main qualitative conclusion that will be sub-
stantiated using this example is as follows. We will 
show that, despite the absence of capillary dissi-
pation, the water saturation profile in the process 
of moving downward spreads and approaches the 
undisturbed state    . Estimates will also be giv-
en for the characteristic depth of the influence of 
the non-stationarity of the external inflow. In this 
case, stabilisation occurs in a power-law manner in 
depth and time.

Let the function R(t) be continuous and strictly 
decreasing from the value R1 at t=0 to the value 
R0<R1 at t=T. Note that the rectangular pulse (5) 
is neither continuous nor strictly decreasing, how-
ever, its solution can be obtained by limiting the 
transition of the solutions for the class. By T1=0 
we denote a point in time for which R(T1)=K. If  
R1 <K, then we will assume that T1=0. Let us also 
introduce the notation                    . We define 
a continuous monotonically decreasing function 
                on an interval                     by equality      
                .    . Then                and               .

For solutions of equations (2), (15), the plane of independent variables  is divided into 

previously unknown regions, which correspond to saturated flow zones ( , ), partially 

saturated ( , ) and dry ( , ). At the boundaries of the zones, the pressure 

continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 

that in saturated zones the flow  depends only on time, and the pressure is a linear function . In 

a dry zone, all the required functions ,  and  are known and are equal to zero. In a partially 

saturated soil zone  , and equations (2) are reduced to one first-order differential equation of 

the form 
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continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 

that in saturated zones the flow  depends only on time, and the pressure is a linear function . In 

a dry zone, all the required functions ,  and  are known and are equal to zero. In a partially 

saturated soil zone  , and equations (2) are reduced to one first-order differential equation of 

the form 
 

                                  (15) 

 

Methods for constructing exact solutions of hyperbolic equations have been studied in detail in gas 

dynamics (Loitsiansky L.G., 1987, Ch. 6, Gurbatov S.N., 2011), as well as in connection with 

problems of nonlinear sorption (Venitsianov E.V., 1983) and many others. The characteristics 

 of equation (15) are solutions of the ordinary differential equation 
 

                                        (16) 

 

From equation (15) it follows that along with the characteristics,   therefore, on 

the characteristics, the water saturation is constant, and the characteristics themselves are 

straightforward. 

Equations (2), (15) can have discontinuous solutions and must be supplemented with conditions 

wherever there are jumps in water saturation. If the law of motion of a jump on a plane  has 

the form  and the values of water saturation and flow before and after the jump at the 

moment  are equal  and, ,  respectively, then the law of conservation of mass implies the 

equality 
 

                                         (17) 

 

For functions  with a downward convex graph, those jumps for which are not 

evolutionary, i.e. cannot form due to the evolution of a continuous water saturation profile. To 

ensure the uniqueness of the solution to the problem, such jumps should be excluded from 

consideration. Thus, the condition on the jump (17) must be supplemented by an inequality . 

The convexity of the function  implies that for allowed jumps, i.e. at , the rupture 

),( zt

1=q 0³p

10 <<q 0=p 0=q 0=p

q z

q q p

0=p

.0)(
=

¶
¶

+
¶
¶

z
kK

t
m qq

)(tzz =

)).,(( xtkK
dt
dzm q¢=

,0/))(,( =dttxtdq

),( zt

)(tzz =

t 00 ,qq q q

.
0

0

qq -
-

=
qq

dt
dzm

)(qkk = 0qq <

0qq >

)(qk 0qq >

For solutions of equations (2), (15), the plane of independent variables  is divided into 

previously unknown regions, which correspond to saturated flow zones ( , ), partially 

saturated ( , ) and dry ( , ). At the boundaries of the zones, the pressure 

continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 

that in saturated zones the flow  depends only on time, and the pressure is a linear function . In 

a dry zone, all the required functions ,  and  are known and are equal to zero. In a partially 

saturated soil zone  , and equations (2) are reduced to one first-order differential equation of 

the form 
 

                                  (15) 

 

Methods for constructing exact solutions of hyperbolic equations have been studied in detail in gas 

dynamics (Loitsiansky L.G., 1987, Ch. 6, Gurbatov S.N., 2011), as well as in connection with 

problems of nonlinear sorption (Venitsianov E.V., 1983) and many others. The characteristics 

 of equation (15) are solutions of the ordinary differential equation 
 

                                        (16) 

 

From equation (15) it follows that along with the characteristics,   therefore, on 

the characteristics, the water saturation is constant, and the characteristics themselves are 

straightforward. 

Equations (2), (15) can have discontinuous solutions and must be supplemented with conditions 

wherever there are jumps in water saturation. If the law of motion of a jump on a plane  has 

the form  and the values of water saturation and flow before and after the jump at the 

moment  are equal  and, ,  respectively, then the law of conservation of mass implies the 

equality 
 

                                         (17) 

 

For functions  with a downward convex graph, those jumps for which are not 

evolutionary, i.e. cannot form due to the evolution of a continuous water saturation profile. To 

ensure the uniqueness of the solution to the problem, such jumps should be excluded from 

consideration. Thus, the condition on the jump (17) must be supplemented by an inequality . 

The convexity of the function  implies that for allowed jumps, i.e. at , the rupture 

),( zt

1=q 0³p

10 <<q 0=p 0=q 0=p

q z

q q p

0=p

.0)(
=

¶
¶

+
¶
¶

z
kK

t
m qq

)(tzz =

)).,(( xtkK
dt
dzm q¢=

,0/))(,( =dttxtdq

),( zt

)(tzz =

t 00 ,qq q q

.
0

0

qq -
-

=
qq

dt
dzm

)(qkk = 0qq <

0qq >

)(qk 0qq >

For solutions of equations (2), (15), the plane of independent variables  is divided into 

previously unknown regions, which correspond to saturated flow zones ( , ), partially 

saturated ( , ) and dry ( , ). At the boundaries of the zones, the pressure 

continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 

that in saturated zones the flow  depends only on time, and the pressure is a linear function . In 

a dry zone, all the required functions ,  and  are known and are equal to zero. In a partially 
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For solutions of equations (2), (15), the plane of independent variables  is divided into 

previously unknown regions, which correspond to saturated flow zones ( , ), partially 

saturated ( , ) and dry ( , ). At the boundaries of the zones, the pressure 

continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 

that in saturated zones the flow  depends only on time, and the pressure is a linear function . In 
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For solutions of equations (2), (15), the plane of independent variables  is divided into 

previously unknown regions, which correspond to saturated flow zones ( , ), partially 

saturated ( , ) and dry ( , ). At the boundaries of the zones, the pressure 

continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 

that in saturated zones the flow  depends only on time, and the pressure is a linear function . In 

a dry zone, all the required functions ,  and  are known and are equal to zero. In a partially 
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For solutions of equations (2), (15), the plane of independent variables  is divided into 

previously unknown regions, which correspond to saturated flow zones ( , ), partially 

saturated ( , ) and dry ( , ). At the boundaries of the zones, the pressure 

continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 

that in saturated zones the flow  depends only on time, and the pressure is a linear function . In 
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previously unknown regions, which correspond to saturated flow zones ( , ), partially 

saturated ( , ) and dry ( , ). At the boundaries of the zones, the pressure 

continuity condition and the mass conservation law must be satisfied. From equations (2) it follows 
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a dry zone, all the required functions ,  and  are known and are equal to zero. In a partially 

saturated soil zone  , and equations (2) are reduced to one first-order differential equation of 

the form 
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From equation (15) it follows that along with the characteristics,   therefore, on 
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straightforward. 

Equations (2), (15) can have discontinuous solutions and must be supplemented with conditions 

wherever there are jumps in water saturation. If the law of motion of a jump on a plane  has 

the form  and the values of water saturation and flow before and after the jump at the 
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For functions  with a downward convex graph, those jumps for which are not 

evolutionary, i.e. cannot form due to the evolution of a continuous water saturation profile. To 

ensure the uniqueness of the solution to the problem, such jumps should be excluded from 

consideration. Thus, the condition on the jump (17) must be supplemented by an inequality . 

The convexity of the function  implies that for allowed jumps, i.e. at , the rupture 
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velocity is less than the characteristic velocity  at the points adjacent to the rupture behind 

but greater than before the jump. 

Using the characteristic equation (16) and the condition on discontinuities (17), it is possible to 

construct various exact solutions of the equations in a partially saturated medium, gluing them with 

solutions in the saturated and dry zones, if any, and along this path to obtain explicit expressions for 

the solutions in the entire area. 

In contrast to the linearised model for a power supply pulse  of an arbitrary shape, it is not 

possible to derive a unified formula for the general solution of a nonlinear capillary-free problem. It 

is relatively simple to construct a solution to this problem in the class of functions monotonically 

decreasing in time . We will construct an exact solution to this problem in an explicit form. The 

main qualitative conclusion that will be substantiated using this example is as follows. We will 

show that, despite the absence of capillary dissipation, the water saturation profile in the process of 

moving downward spreads and approaches the undisturbed state . Estimates will also be given 

for the characteristic depth of the influence of the non-stationarity of the external inflow. In this 

case, stabilisation occurs in a power-law manner in depth and time. 

Let the function  be continuous and strictly decreasing from the value  at  to the value 

 at . Note that the rectangular pulse (5) is neither continuous nor strictly decreasing, 

however, its solution can be obtained by limiting the transition of the solutions for the class. By 

 we denote a point in time for which . If , then we will assume that . 

Let us also introduce the notation . We define a continuous monotonically 

decreasing function  on an interval  by equality . Then  

and . 

The structure of the solution to the problem, constructed by the method of characteristics, is 

schematically shown in Fig. 4. On this diagram, zones I, II, III, and IV, V are shown, in which the 

solution is given by expressions of different types. The diagram shows the case of pressure filtration 

. When zones I and II are absent on the diagram, and points ,  and  coincide 

with the origin . The procedure for constructing these zones and explicit formulas for the sought 
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The structure of the solution to the problem, 
constructed by the method of characteristics, is 
schematically shown in Fig. 4. On this diagram, 
zones I, II, III, and IV, V are shown, in which the 
solution is given by expressions of different types. 
The diagram shows the case of pressure filtration    

       . When             zones I and II are absent on 
the diagram, and points          and     coincide with 
the origin . The procedure for constructing these 
zones and explicit formulas for the sought func-
tions in them is described below.  

At the initial moment, an instantaneous change 

in the inflow from value     to value             will lead 
to the appearance of a jump in water saturation 
from     to value           . If at the same time          , 
then        , and the soil behind the jump will be  
water-saturated. The further movement of the 
jump is shown in the diagram by the curve              . 
Below this curve, i.e. in zone III , the flow remains 
unperturbed and the solution is given by formulas 
(4). After the jump, the flow is continuous, and 
along the ray      continuously adheres to the un-
disturbed flow of zone IV. Thus, at each depth, the 
duration of the infiltration pulse is finite.

Fig. 4. Schematic description of the structure of the solution to the problem of capillary infiltration 
in a pulsed power supply mode.
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moving downward spreads and approaches the undisturbed state . Estimates will also be given 
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schematically shown in Fig. 4. On this diagram, zones I, II, III, and IV, V are shown, in which the 

solution is given by expressions of different types. The diagram shows the case of pressure filtration 

. When zones I and II are absent on the diagram, and points ,  and  coincide 

with the origin . The procedure for constructing these zones and explicit formulas for the sought 

mkK /)(q¢

)(tR

)(tR

0q

)(tR 1R 0=t

10 RR < Tt =

TT <1 KTR =)( 1 KR <1 01 =T

( ) bq /1
11 /)( KTR=

)(qtt = 10 qqq ££ ( )( ) bqqt KR = T=)( 0qt

11)( T=qt

KR >1 KR £1 1T 1C O

velocity is less than the characteristic velocity  at the points adjacent to the rupture behind 

but greater than before the jump. 

Using the characteristic equation (16) and the condition on discontinuities (17), it is possible to 

construct various exact solutions of the equations in a partially saturated medium, gluing them with 

solutions in the saturated and dry zones, if any, and along this path to obtain explicit expressions for 

the solutions in the entire area. 

In contrast to the linearised model for a power supply pulse  of an arbitrary shape, it is not 

possible to derive a unified formula for the general solution of a nonlinear capillary-free problem. It 

is relatively simple to construct a solution to this problem in the class of functions monotonically 

decreasing in time . We will construct an exact solution to this problem in an explicit form. The 

main qualitative conclusion that will be substantiated using this example is as follows. We will 

show that, despite the absence of capillary dissipation, the water saturation profile in the process of 

moving downward spreads and approaches the undisturbed state . Estimates will also be given 

for the characteristic depth of the influence of the non-stationarity of the external inflow. In this 

case, stabilisation occurs in a power-law manner in depth and time. 

Let the function  be continuous and strictly decreasing from the value  at  to the value 

 at . Note that the rectangular pulse (5) is neither continuous nor strictly decreasing, 

however, its solution can be obtained by limiting the transition of the solutions for the class. By 

 we denote a point in time for which . If , then we will assume that . 

Let us also introduce the notation . We define a continuous monotonically 

decreasing function  on an interval  by equality . Then  

and . 

The structure of the solution to the problem, constructed by the method of characteristics, is 

schematically shown in Fig. 4. On this diagram, zones I, II, III, and IV, V are shown, in which the 

solution is given by expressions of different types. The diagram shows the case of pressure filtration 

. When zones I and II are absent on the diagram, and points ,  and  coincide 

with the origin . The procedure for constructing these zones and explicit formulas for the sought 

mkK /)(q¢

)(tR

)(tR

0q

)(tR 1R 0=t

10 RR < Tt =

TT <1 KTR =)( 1 KR <1 01 =T

( ) bq /1
11 /)( KTR=

)(qtt = 10 qqq ££ ( )( ) bqqt KR = T=)( 0qt

11)( T=qt

KR >1 KR £1 1T 1C O

velocity is less than the characteristic velocity  at the points adjacent to the rupture behind 

but greater than before the jump. 

Using the characteristic equation (16) and the condition on discontinuities (17), it is possible to 

construct various exact solutions of the equations in a partially saturated medium, gluing them with 

solutions in the saturated and dry zones, if any, and along this path to obtain explicit expressions for 

the solutions in the entire area. 

In contrast to the linearised model for a power supply pulse  of an arbitrary shape, it is not 

possible to derive a unified formula for the general solution of a nonlinear capillary-free problem. It 

is relatively simple to construct a solution to this problem in the class of functions monotonically 

decreasing in time . We will construct an exact solution to this problem in an explicit form. The 

main qualitative conclusion that will be substantiated using this example is as follows. We will 

show that, despite the absence of capillary dissipation, the water saturation profile in the process of 

moving downward spreads and approaches the undisturbed state . Estimates will also be given 

for the characteristic depth of the influence of the non-stationarity of the external inflow. In this 

case, stabilisation occurs in a power-law manner in depth and time. 

Let the function  be continuous and strictly decreasing from the value  at  to the value 

 at . Note that the rectangular pulse (5) is neither continuous nor strictly decreasing, 

however, its solution can be obtained by limiting the transition of the solutions for the class. By 

 we denote a point in time for which . If , then we will assume that . 

Let us also introduce the notation . We define a continuous monotonically 

decreasing function  on an interval  by equality . Then  

and . 

The structure of the solution to the problem, constructed by the method of characteristics, is 

schematically shown in Fig. 4. On this diagram, zones I, II, III, and IV, V are shown, in which the 

solution is given by expressions of different types. The diagram shows the case of pressure filtration 

. When zones I and II are absent on the diagram, and points ,  and  coincide 

with the origin . The procedure for constructing these zones and explicit formulas for the sought 

mkK /)(q¢

)(tR

)(tR

0q

)(tR 1R 0=t

10 RR < Tt =

TT <1 KTR =)( 1 KR <1 01 =T

( ) bq /1
11 /)( KTR=

)(qtt = 10 qqq ££ ( )( ) bqqt KR = T=)( 0qt

11)( T=qt

KR >1 KR £1 1T 1C O

functions in them is described below. 

 
Fig. 4. Schematic description of the structure of the solution to the problem of capillary infiltration 

in a pulsed power supply mode. 

At the initial moment, an instantaneous change in the inflow from value  to value  will 

lead to the appearance of a jump in water saturation from  to value . If at the same time 

, then , and the soil behind the jump will be water-saturated. The further movement of 

the jump is shown in the diagram by the curve . Below this curve, i.e. in zone III , the flow 

remains unperturbed and the solution is given by formulas (4). After the jump, the flow is 

continuous , and along the ray  continuously adheres to the undisturbed flow of zone IV . Thus, 

at each depth, the duration of the infiltration pulse is finite. 
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Zone I corresponds to pressure infiltration. In it
Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 
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Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 
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put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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. It, as well as through-
out the zone II

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 
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Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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Boundaries

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 
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Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 
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Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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zones II are straight line 
segments. The slope of the segment

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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is found 
from the relationship at the discontinuities (17), 
where

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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and the slop

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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is 
found from the equation of characteristics (16), in 
which

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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. As a result of simple calculations 
for the coordinates of a point

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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, the following for-
mulas are obtained

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 
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Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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where 

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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In zone V, the characteristics of the solution by 
equality (16) are rays and are given by the equa-
tions

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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	 (18)

Monotonic decrease of the previously defined 
function

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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ensures that this equation can be 
uniquely solved relative

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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. Thereby obtained 
function

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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is a solution in regarded zone 
V. Water saturation

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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within zone V increases 
with depth

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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and decreases with time

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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. The char-
acteristics begin at the points of the segment

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 

             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
 

           (19) 

 

1),( =ztq KtRztq >= )(),(

1OC

)(tRq = 1=q

11CT 1Tt =

1),( =ztq Kztq =),( 0),( =ztp

CT1 CC1 CC1

Kq = bq00 Kq = 1=q CT1

1),( ºztq

C

[ ],)1( 00
1

11

1
bbb qqbqqb

b
+--

= -m
MzC [ ],)1( 00

1
11

1
1 bbb qqbqqb +--
+= -K

MTtC

( ) .)(
1

0
01 ò -=

T

dtRtRM

( ),)(1 qtqb b -= - tKmz .10 qqq <<

)(qt

q ),( ztqq =

),( ztq z t

TT1 0=z

CT1 TB

q 1q 0q )(qt

11)( T=qt T=)( 0qt

CA

z 0qq =

0)( qhh >= z )(tzz =

.
0

0

qh
qh bb

-
-

= K
dt
dzm

at

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 
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Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 
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positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 
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put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  
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put . The boundary separating zones I and II is the vertical interval on which . It, as well 
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is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 
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positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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             (18) 
 

Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
 

           (19) 

 

1),( =ztq KtRztq >= )(),(

1OC

)(tRq = 1=q

11CT 1Tt =

1),( =ztq Kztq =),( 0),( =ztp

CT1 CC1 CC1

Kq = bq00 Kq = 1=q CT1

1),( ºztq

C

[ ],)1( 00
1

11

1
bbb qqbqqb

b
+--

= -m
MzC [ ],)1( 00

1
11

1
1 bbb qqbqqb +--
+= -K

MTtC

( ) .)(
1

0
01 ò -=

T

dtRtRM

( ),)(1 qtqb b -= - tKmz .10 qqq <<

)(qt

q ),( ztqq =

),( ztq z t

TT1 0=z

CT1 TB

q 1q 0q )(qt

11)( T=qt T=)( 0qt

CA

z 0qq =

0)( qhh >= z )(tzz =

.
0

0

qh
qh bb

-
-

= K
dt
dzm

, 
respectively, and the value
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positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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To complete the construction of the solution, 
it remains to determine the formula for the cur-
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by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 
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is found from the equation of characteristics (16), in which . As a result of simple 
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V in scheme 4. At each point of this curve , lo-
cated at depth

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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             (18) 
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characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 
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positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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to some variable value

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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. For the equation

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 

  

where   

 

In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 
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Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
 

           (19) 

 

1),( =ztq KtRztq >= )(),(

1OC

)(tRq = 1=q

11CT 1Tt =

1),( =ztq Kztq =),( 0),( =ztp

CT1 CC1 CC1

Kq = bq00 Kq = 1=q CT1

1),( ºztq

C

[ ],)1( 00
1

11

1
bbb qqbqqb

b
+--

= -m
MzC [ ],)1( 00

1
11

1
1 bbb qqbqqb +--
+= -K

MTtC

( ) .)(
1

0
01 ò -=

T

dtRtRM

( ),)(1 qtqb b -= - tKmz .10 qqq <<

)(qt

q ),( ztqq =

),( ztq z t

TT1 0=z

CT1 TB

q 1q 0q )(qt

11)( T=qt T=)( 0qt

CA

z 0qq =

0)( qhh >= z )(tzz =

.
0

0

qh
qh bb

-
-

= K
dt
dzm

of this curve, 
it follows from the relations on the jump (17) that

 
 

Zone I corresponds to pressure infiltration. In it , , and the pressure is 

positive. The section  of the jump trajectory , i.e. the lower boundary of this zone is determined 

by integrating the relationship at the discontinuities (17), in which,  and  should be 

put . The boundary separating zones I and II is the vertical interval on which . It, as well 

as throughout the zone II, , , .  

Boundaries  and zones II are straight line segments. The slope of the segment  is found 

from the relationship at the discontinuities (17), where , ,  and the slope  

is found from the equation of characteristics (16), in which . As a result of simple 

calculations for the coordinates of a point , the following formulas are obtained 
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In zone V, the characteristics of the solution by equality (16) are rays and are given by the equations 
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Monotonic decrease of the previously defined function  ensures that this equation can be 

uniquely solved relative . Thereby obtained function  is a solution in regarded zone V. 

Water saturation  within zone V increases with depth  and decreases with time . The 

characteristics begin at the points of the segment  at  and fan out without intersecting with 

each other. The gas dynamics of a solution with such a structure is called Riemann or unloading 

waves. Rays  and  are the border zone V and given by the equations (18), in which the water 

saturation  takes maximum and minimum values  and , respectively, and the value  - the 

value  and . 

 To complete the construction of the solution, it remains to determine the formula for the 

curvilinear boundary separating zones III and V in scheme 4. At each point of this curve , 

located at depth , the water saturation abruptly changes from a value  to some variable 

value . For the equation  of this curve, it follows from the relations on the 

jump (17) that 
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Since the quantitySince the quantity  refers to the solution in the zone of the unloading wave V, one can use the 

equation of characteristics (18) for it and obtain an additional relation 
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binding values ,  and  on the trajectory of the jump . Together with the relation (20) the 

first order differential equation (19) is solved in quadrature with the initial conditions , 

. Omitting the calculations, we give an explicit relation between ,  and  on the 

trajectory of the jump : 
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Equalities (20) and (21) define the trajectory of the jump   in a parametric form, if the quantity 

 is considered as a parameter varying within  . The value of the parameter  

corresponds to the point  of the trajectory, and at,    point  of the trajectory goes to 

infinity. Further when  one needs to express the magnitude and duration of the jump 

asymptotically. The auxiliary function  from equality (21) at  tends to zero faster than 
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equations (20) and (21) which, in the general case can not be solved explicitly, but allow to 

construct asymptotic expansions of the solutions. From (22) and (23) it follows that the magnitude 

of a jump  decreases with increasing depth in inverse proportion to the square root of  at 

great depths. At the same time, the duration of the infiltration pulse increases in proportion to the 
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first order differential equation (19) is solved in quadrature with the initial conditions , 

. Omitting the calculations, we give an explicit relation between ,  and  on the 

trajectory of the jump : 
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 on the trajectory of 
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where through and  marked the ray equation  and the curved trajectory 
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30 VATTEN • 1 • 2022

Since the quantity  refers to the solution in the zone of the unloading wave V, one can use the 

equation of characteristics (18) for it and obtain an additional relation 
 

,                   (20) 
 

binding values ,  and  on the trajectory of the jump . Together with the relation (20) the 

first order differential equation (19) is solved in quadrature with the initial conditions , 

. Omitting the calculations, we give an explicit relation between ,  and  on the 

trajectory of the jump : 
 

     (21) 

 

where   

Equalities (20) and (21) define the trajectory of the jump   in a parametric form, if the quantity 

 is considered as a parameter varying within  . The value of the parameter  

corresponds to the point  of the trajectory, and at,    point  of the trajectory goes to 

infinity. Further when  one needs to express the magnitude and duration of the jump 

asymptotically. The auxiliary function  from equality (21) at  tends to zero faster than 

. Using this circumstance, from (21) we obtain  
 

       (22) 

 

Using this relation and equality (20), it is easy to obtain the asymptotic expression for the pulse 

duration at depth  
 

       (23) 

 

where through and  marked the ray equation  and the curved trajectory 

 jump respectively . The expression for the function of  and  defined by the 

equations (20) and (21) which, in the general case can not be solved explicitly, but allow to 

construct asymptotic expansions of the solutions. From (22) and (23) it follows that the magnitude 

of a jump  decreases with increasing depth in inverse proportion to the square root of  at 

great depths. At the same time, the duration of the infiltration pulse increases in proportion to the 

h

( ))(1 hthb b -= - tKmz

z t h CA

CC ztz =)(

1)( qh =Cz z t h

CA

),()1( 0
1

0 h
h

qhbqhb
b b

bbb

fMmz
-=

+-- -

( )
( )

.)()( 0ò -=
T

dtRtRf
ht

h

CA

h 10 qhq << 1qh =

C 0qh ® ),( tz

¥®z

)(hf 0qh ®

0qh -

ú
ú
û

ù

ê
ê
ë

é
+÷÷

ø

ö
çç
è

æ
-

+
+÷÷

ø

ö
çç
è

æ
-

=
- ...

)1(
2

6
11

)1(
2)(

2/1

0

2/1

00

0

qb
b

qbq
qh

mz
M

mz
Mz

z

( ) ...,
3

)12()1(2)()(
00

2/1
0 +

-
-

-
=- bb qb

b
qb

qb
K
M

K
Mmzztzt OCATB

)(ztt TB= )(ztt OCA= TB

CAOC1 )(zh )(ztOCA

0)( qh -z z
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defined by the equa-
tions (20) and (21) which, in the general case can 
not be solved explicitly, but allow to construct as-
ymptotic expansions of the solutions. From (22) 
and (23) it follows that the magnitude of a jump
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This assumption is that the squared pulse 
duration increases with depth with a velocity 
that is the sum of the previously found corre-
sponding velocities in the linearised and capil-
lary-free problems. This equality implies that
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Since the total volume of moisture supplied with 

an impulse to the depthSince the total volume of moisture supplied with an impulse to the depth  is fixed and equal , 

the amplitude of the flow in order of magnitude should be 
 

      (26) 

 

The formulas for  and  were obtained earlier, and the constant  in this relation 

can be chosen so that for , the value of the expression on the right-hand side coincides with 

the given amplitude of the flow on the surface, i.e. with maximum function  . In particular, 

for a pulse  in the form of a rectangular step (5) . Hypothesis of adding 

velocities (25) from the reduced to the assumption of approximate equalities of amplitude 

fluctuations of flow  and effective amplitude  as defined by equation (26). 

With increasing depth , the  effective amplitude of flux fluctuations  decreases and tends to 

zero. The hypothesis of the addition of the effects of capillary dissipation and nonlinear scattering 

(25) makes it possible to determine the depth of the influence of unsteady surface feeding  as 

such a value  for which the equality holds true 
 

              (27) 
 

where  is a given small dimensionless number that determines the threshold value of the 

amplitude of flux fluctuations, below which the flux can be considered steady. The analytical 

expression for the effective amplitude  in this equality is determined by the chain of formulas 

(26), (13), (24) and algebraic equations (20) and (21). In the case of general position, equations. 

(20) and (21) cannot be solved explicitly , but can be investigated asymptotically. Since the depth of 

the non-stationary zone  is large for sufficiently small values , in equation (27) one can use an 

approximate expression for the effective amplitude 
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for a pulse  in the form of a rectangular step (5) . Hypothesis of adding 

velocities (25) from the reduced to the assumption of approximate equalities of amplitude 

fluctuations of flow  and effective amplitude  as defined by equation (26). 

With increasing depth , the  effective amplitude of flux fluctuations  decreases and tends to 

zero. The hypothesis of the addition of the effects of capillary dissipation and nonlinear scattering 

(25) makes it possible to determine the depth of the influence of unsteady surface feeding  as 

such a value  for which the equality holds true 
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where  is a given small dimensionless number that determines the threshold value of the 

amplitude of flux fluctuations, below which the flux can be considered steady. The analytical 

expression for the effective amplitude  in this equality is determined by the chain of formulas 

(26), (13), (24) and algebraic equations (20) and (21). In the case of general position, equations. 

(20) and (21) cannot be solved explicitly , but can be investigated asymptotically. Since the depth of 

the non-stationary zone  is large for sufficiently small values , in equation (27) one can use an 

approximate expression for the effective amplitude 
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were ob-
tained earlier, and the constant Const in this rela-
tion can be chosen so that for
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, the value of the 
expression on the right-hand side coincides with 
the given amplitude of the flow on the surface, i.e. 
with maximum function
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. In particular, for 
a pulse

Since the total volume of moisture supplied with an impulse to the depth  is fixed and equal , 
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in the form of a rectangular step (5)
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Since the total volume of moisture supplied with an impulse to the depth  is fixed and equal , 

the amplitude of the flow in order of magnitude should be 
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. Hypothesis of adding veloc-
ities (25) from the reduced to the assumption of 
approximate equalities of amplitude fluctuations 
of flow

Since the total volume of moisture supplied with an impulse to the depth  is fixed and equal , 

the amplitude of the flow in order of magnitude should be 
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can be chosen so that for , the value of the expression on the right-hand side coincides with 

the given amplitude of the flow on the surface, i.e. with maximum function  . In particular, 
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fluctuations of flow  and effective amplitude  as defined by equation (26). 
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(25) makes it possible to determine the depth of the influence of unsteady surface feeding  as 

such a value  for which the equality holds true 
 

              (27) 
 

where  is a given small dimensionless number that determines the threshold value of the 

amplitude of flux fluctuations, below which the flux can be considered steady. The analytical 

expression for the effective amplitude  in this equality is determined by the chain of formulas 

(26), (13), (24) and algebraic equations (20) and (21). In the case of general position, equations. 

(20) and (21) cannot be solved explicitly , but can be investigated asymptotically. Since the depth of 

the non-stationary zone  is large for sufficiently small values , in equation (27) one can use an 

approximate expression for the effective amplitude 
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 and effective amplitude 

Since the total volume of moisture supplied with an impulse to the depth  is fixed and equal , 

the amplitude of the flow in order of magnitude should be 
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can be chosen so that for , the value of the expression on the right-hand side coincides with 

the given amplitude of the flow on the surface, i.e. with maximum function  . In particular, 
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(20) and (21) cannot be solved explicitly , but can be investigated asymptotically. Since the depth of 

the non-stationary zone  is large for sufficiently small values , in equation (27) one can use an 

approximate expression for the effective amplitude 
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 as de-
fined by equation (26).

With increasing depth

Since the total volume of moisture supplied with an impulse to the depth  is fixed and equal , 

the amplitude of the flow in order of magnitude should be 
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can be chosen so that for , the value of the expression on the right-hand side coincides with 

the given amplitude of the flow on the surface, i.e. with maximum function  . In particular, 
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such a value  for which the equality holds true 
 

              (27) 
 

where  is a given small dimensionless number that determines the threshold value of the 

amplitude of flux fluctuations, below which the flux can be considered steady. The analytical 

expression for the effective amplitude  in this equality is determined by the chain of formulas 
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(20) and (21) cannot be solved explicitly , but can be investigated asymptotically. Since the depth of 

the non-stationary zone  is large for sufficiently small values , in equation (27) one can use an 

approximate expression for the effective amplitude 
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, the effective amplitude 
of flux fluctuations

Since the total volume of moisture supplied with an impulse to the depth  is fixed and equal , 

the amplitude of the flow in order of magnitude should be 
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can be chosen so that for , the value of the expression on the right-hand side coincides with 

the given amplitude of the flow on the surface, i.e. with maximum function  . In particular, 

for a pulse  in the form of a rectangular step (5) . Hypothesis of adding 

velocities (25) from the reduced to the assumption of approximate equalities of amplitude 

fluctuations of flow  and effective amplitude  as defined by equation (26). 
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zero. The hypothesis of the addition of the effects of capillary dissipation and nonlinear scattering 

(25) makes it possible to determine the depth of the influence of unsteady surface feeding  as 

such a value  for which the equality holds true 
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decreases and tends to 
zero. The hypothesis of the addition of the effects 
of capillary dissipation and nonlinear scattering 
(25) makes it possible to determine the depth of 
the influence of unsteady surface feeding

Since the total volume of moisture supplied with an impulse to the depth  is fixed and equal , 

the amplitude of the flow in order of magnitude should be 
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in this equality is de-
termined by the chain of formulas (26), (13), (24) 
and algebraic equations (20) and (21). In the case 
of general position, equations (20) and (21) can-
not be solved explicitly , but can be investigated 
asymptotically. Since the depth of the non-station-
ary zone
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, in 
equation (27) one can use an approximate expres-
sion for the effective amplitude
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Conclusions

1.	Two physical mechanisms lead to the stabilisa-
tion of the flow in the case of impulse moisture 
penetration into the soil: capillary dissipation 
and nonlinear dispersion of the irregularities of 
the moisture profile.

2.	To analyse purely mathematical methods for 
solving it is advisable to simplify applying the 
principle of decomposition, namely, to consid-
er the influence of the capillary dissipation and 
nonlinearity separately and then summarise 
the results somehow. Taking into account only 
capillary effects means linearising the Richards 
equations, and ignoring capillary forces from the 
Richards equations results in a nonlinear system 
called the Green-Ampt model in the literature. 
Both simplified problem models of the pulse 
and the periodic arrival of moisture in the soil 
can be solved by explicit formulas.

3.	With a pulsed moisture supply, regardless of 
the pulse shape, the amplitude of solutions at 
great depths decreases in inverse proportion to 
the square root of the depth in both the line-
arised and capillary-free problems. This enables 
a single explicit formula for the typical depth at 
which infiltration unsteady flow becomes sub-
stantially.
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